Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands.
Photosynth Res. 2023 Jan;155(1):35-47. doi: 10.1007/s11120-022-00971-2. Epub 2022 Oct 19.
Photosystem I and II (PSI and PSII) work together to convert solar energy into chemical energy. Whilst a lot of research has been done to unravel variability of PSII fluorescence in response to biotic and abiotic factors, the contribution of PSI to in vivo fluorescence measurements has often been neglected or considered to be constant. Furthermore, little is known about how the absorption and emission properties of PSI from different plant species differ. In this study, we have isolated PSI from five plant species and compared their characteristics using a combination of optical and biochemical techniques. Differences have been identified in the fluorescence emission spectra and at the protein level, whereas the absorption spectra were virtually the same in all cases. In addition, the emission spectrum of PSI depends on temperature over a physiologically relevant range from 280 to 298 K. Combined, our data show a critical comparison of the absorption and emission properties of PSI from various plant species.
光系统 I 和 II(PSI 和 PSII)协同作用将太阳能转化为化学能。虽然已经进行了大量的研究来揭示 PSII 荧光对生物和非生物因素的变化,但 PSI 对活体荧光测量的贡献常常被忽视或被认为是恒定的。此外,人们对不同植物物种的 PSI 的吸收和发射特性的差异知之甚少。在这项研究中,我们从五种植物中分离出 PSI,并使用光学和生化技术相结合来比较它们的特性。在荧光发射光谱和蛋白质水平上都存在差异,而在所有情况下,吸收光谱几乎相同。此外,PSI 的发射光谱在 280 到 298 K 的生理相关范围内随温度而变化。综上所述,我们的数据对来自不同植物物种的 PSI 的吸收和发射特性进行了关键性的比较。