Research School of Biology and ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, Australian Capital Territory, Australia.
Department of Environmental Sciences, University of Basel, Basel, Switzerland.
Nat Plants. 2020 Mar;6(3):245-258. doi: 10.1038/s41477-020-0606-6. Epub 2020 Mar 9.
Stable isotopes are commonly used to study the diffusion of CO within photosynthetic plant tissues. The standard method used to interpret the observed preference for the lighter carbon isotope in C photosynthesis involves the model of Farquhar et al., which relates carbon isotope discrimination to physical and biochemical processes within the leaf. However, under many conditions the model returns unreasonable results for mesophyll conductance to CO diffusion (g), especially when rates of photosynthesis are low. Here, we re-derive the carbon isotope discrimination model using modified assumptions related to the isotope effect of mitochondrial respiration. In particular, we treat the carbon pool associated with respiration as separate from the pool of primary assimilates. We experimentally test the model by comparing g values measured with different CO source gases varying in their isotopic composition, and show that our new model returns matching g values that are much more reasonable than those obtained with the previous model. We use our results to discuss CO diffusion properties within the mesophyll.
稳定同位素常用于研究 CO 在光合作用组织内的扩散。解释观察到的 C 光合作用中更轻的碳同位素偏好的标准方法涉及 Farquhar 等人的模型,该模型将碳同位素分馏与叶片内的物理和生化过程联系起来。然而,在许多情况下,该模型返回的叶肉 CO 扩散(g)导数值不合理,尤其是当光合作用速率较低时。在这里,我们使用与线粒体呼吸的同位素效应有关的修改假设重新推导了碳同位素分馏模型。特别是,我们将与呼吸有关的碳库与初级同化产物的库分开处理。我们通过比较用不同同位素组成的 CO 源气体测量的 g 值来实验验证该模型,并表明我们的新模型返回的 g 值更合理,与之前的模型相比有很大的改善。我们使用结果来讨论叶肉内的 CO 扩散特性。