Gonzalez-Alonso J, Richardson R S, Saltin B
Copenhagen Muscle Research Centre, Rigshospitalet, Section 7652, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark.
J Physiol. 2001 Jan 15;530(Pt 2):331-41. doi: 10.1111/j.1469-7793.2001.0331l.x.
We hypothesised that reducing arterial oxyhaemoglobin (O2Hba) with carbon monoxide (CO) in both normoxia and hyperoxia, or acute hypoxia would cause similar compensatory increases in human skeletal muscle blood flow and vascular conductance during submaximal exercise, despite vast differences in arterial free oxygen partial pressure (Pa,O2). Seven healthy males completed four 5 min one-legged knee-extensor exercise bouts in the semi-supine position (30 +/- 3 W, mean +/- S.E.M.), separated by approximately 1 h of rest, under the following conditions: (a) normoxia (O2Hba = 195 ml l-1; Pa,O2 = 105 mmHg); (b) hypoxia (163 ml l-1; 47 mmHg); (c) CO + normoxia (18% COHba; 159 ml l-1; 119 mmHg); and (d) CO + hyperoxia (19% COHba; 158 ml l-1; 538 mmHg). CO + normoxia, CO + hyperoxia and systemic hypoxia resulted in a 29-44% higher leg blood flow and leg vascular conductance compared to normoxia (P < 0.05), without altering blood pH, blood acid-base balance or net leg lactate release. Leg blood flow and leg vascular conductance increased in association with reduced O2Hba (r2 = 0.92-0.95; P < 0.05), yet were unrelated to altered Pa,O2. This association was further substantiated in two subsequent studies with graded increases in COHba (n = 4) and NO synthase blockade (n = 2) in the presence of normal Pa,O2. The elevated leg blood flow with CO + normoxia and CO + hyperoxia allowed a approximately 17% greater O2 delivery (P < 0.05) to exercising muscles, compensating for the lower leg O2 extraction (61%) compared to normoxia and hypoxia (69%; P < 0.05), and thereby maintaining leg oxygen uptake constant. The compensatory increases in skeletal muscle blood flow and vascular conductance during exercise with both a CO load and systemic hypoxia are independent of pronounced alterations in Pa,O2 (47-538 mmHg), but are closely associated with reductions in O2Hba. These results suggest a pivotal role of O2 bound to haemoglobin in increasing skeletal muscle vasodilatation during exercise in humans.
我们假设,在常氧、高氧或急性缺氧状态下,用一氧化碳(CO)降低动脉氧合血红蛋白(O2Hba),尽管动脉游离氧分压(Pa,O2)存在巨大差异,但在次最大运动期间会导致人体骨骼肌血流量和血管传导率出现类似的代偿性增加。七名健康男性在半仰卧位完成了四组5分钟的单腿伸膝运动(30±3瓦,平均值±标准误),每组运动之间休息约1小时,运动条件如下:(a)常氧(O2Hba = 195毫升/升;Pa,O2 = 105毫米汞柱);(b)缺氧(163毫升/升;47毫米汞柱);(c)CO + 常氧(18% COHba;159毫升/升;119毫米汞柱);(d)CO + 高氧(19% COHba;158毫升/升;538毫米汞柱)。与常氧相比,CO + 常氧、CO + 高氧和全身性缺氧导致腿部血流量和腿部血管传导率提高29 - 44%(P < 0.05),且未改变血液pH值、血液酸碱平衡或腿部乳酸净释放量。腿部血流量和腿部血管传导率随O2Hba降低而增加(r2 = 0.92 - 0.95;P < 0.05),但与Pa,O2的改变无关。在随后的两项研究中,在正常Pa,O2情况下,随着COHba分级增加(n = 4)和一氧化氮合酶阻断(n = 2),这种关联得到了进一步证实。CO + 常氧和CO + 高氧状态下腿部血流量升高,使运动肌肉的氧输送量增加约17%(P < 0.05),弥补了与常氧和缺氧相比腿部较低的氧摄取率(61%)(常氧和缺氧时为69%;P < 0.05),从而保持腿部摄氧量恒定。在同时存在CO负荷和全身性缺氧的运动过程中,骨骼肌血流量和血管传导率的代偿性增加与Pa,O2(47 - 538毫米汞柱)的显著改变无关,但与O2Hba的降低密切相关。这些结果表明,在人体运动过程中,与血红蛋白结合的氧在增加骨骼肌血管舒张方面起着关键作用。