Laboratoire des Interactions Plantes Micro-organismes (LIPM), Université de Toulouse, INRAE, CNRS, 24 chemin de Borde Rouge - Auzeville CS 52627 F31326, Castanet Tolosan, Cedex, France.
Plant J. 2020 Jul;103(2):903-917. doi: 10.1111/tpj.14747. Epub 2020 Apr 21.
The broad host range necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen of many oil and vegetable crops. Plant genes conferring complete resistance against S. sclerotiorum have not been reported. Instead, plant populations challenged by S. sclerotiorum exhibit a continuum of partial resistance designated as quantitative disease resistance (QDR). Because of their complex interplay and their small phenotypic effect, the functional characterization of QDR genes remains limited. How broad host range necrotrophic fungi manipulate plant programmed cell death is for instance largely unknown. Here, we designed a time-resolved automated disease phenotyping pipeline enabling high-throughput disease lesion measurement with high resolution, low footprint at low cost. We could accurately recover contrasted disease responses in several pathosystems using this system. We used our phenotyping pipeline to assess the kinetics of disease symptoms caused by seven S. sclerotiorum isolates on six A. thaliana natural accessions with unprecedented resolution. Large effect polymorphisms common to the most resistant A. thaliana accessions identified highly divergent alleles of the nucleotide-binding site leucine-rich repeat gene LAZ5 in the resistant accessions Rubezhnoe and Lip-0. We show that impaired LAZ5 expression in laz5.1 mutant lines and in A. thaliana Rub natural accession correlate with enhanced QDR to S. sclerotiorum. These findings illustrate the value of time-resolved image-based phenotyping for unravelling the genetic bases of complex traits such as QDR. Our results suggest that S. sclerotiorum manipulates plant sphingolipid pathways guarded by LAZ5 to trigger programmed cell death and cause disease.
广谱性坏死型真菌核盘菌是许多油料作物和蔬菜作物的毁灭性病原菌。尚未有研究报道能够赋予植物对核盘菌完全抗性的基因。相反,受到核盘菌挑战的植物群体表现出一种被称为数量抗性(QDR)的部分抗性连续体。由于其复杂的相互作用和较小的表型效应,QDR 基因的功能特征仍然有限。例如,广谱性坏死型真菌如何操纵植物程序性细胞死亡在很大程度上是未知的。在这里,我们设计了一个时间分辨的自动化疾病表型分析流水线,能够以高分辨率、低足迹和低成本实现高通量的疾病损伤测量。我们可以使用该系统准确地恢复几个病原体系统中的对比疾病反应。我们使用表型分析流水线以空前的分辨率评估了七个核盘菌分离株在六个拟南芥自然群体中引起的疾病症状的动力学。在最具抗性的拟南芥群体中常见的大效应多态性鉴定了抗性群体鲁别日诺耶(Rubezhnoe)和 Lip-0 中核苷酸结合位点富含亮氨酸重复基因 LAZ5 的高度分化等位基因。我们表明,laz5.1 突变系和拟南芥 Rub 自然群体中 LAZ5 表达的受损与对核盘菌的增强 QDR 相关。这些发现说明了基于时间分辨的图像表型分析在揭示 QDR 等复杂性状的遗传基础方面的价值。我们的结果表明,核盘菌操纵植物神经酰胺途径,该途径由 LAZ5 保护,以触发程序性细胞死亡并导致疾病。