Suppr超能文献

通过整合和数据驱动方法释放植物表型数据的潜力。

Unlocking the potential of plant phenotyping data through integration and data-driven approaches.

作者信息

Coppens Frederik, Wuyts Nathalie, Inzé Dirk, Dhondt Stijn

机构信息

Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium.

Center for Plant Systems Biology, VIB, Technologiepark 927, B-9052, Ghent, Belgium.

出版信息

Curr Opin Syst Biol. 2017 Aug;4:58-63. doi: 10.1016/j.coisb.2017.07.002.

Abstract

Plant phenotyping has emerged as a comprehensive field of research as the result of significant advancements in the application of imaging sensors for high-throughput data collection. The flip side is the risk of drowning in the massive amounts of data generated by automated phenotyping systems. Currently, the major challenge lies in data management, on the level of data annotation and proper metadata collection, and in progressing towards synergism across data collection and analyses. Progress in data analyses includes efforts towards the integration of phenotypic and -omics data resources for bridging the phenotype-genotype gap and obtaining in-depth insights into fundamental plant processes.

摘要

由于成像传感器在高通量数据采集应用方面取得了重大进展,植物表型分析已成为一个综合性的研究领域。另一方面,存在被自动表型分析系统产生的大量数据淹没的风险。目前,主要挑战在于数据管理,包括数据注释和适当的元数据收集层面,以及在数据收集和分析之间实现协同增效方面取得进展。数据分析方面的进展包括努力整合表型和组学数据资源,以弥合表型-基因型差距,并深入了解植物的基本过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70e/7477990/25d09d846d77/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验