Suppr超能文献

机械拉伸通过激活钙依赖性 Erk1/2 使少突胶质细胞中的髓鞘蛋白丢失。

Mechanical stretch induces myelin protein loss in oligodendrocytes by activating Erk1/2 in a calcium-dependent manner.

机构信息

Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA.

Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, Newark, New Jersey, USA.

出版信息

Glia. 2020 Oct;68(10):2070-2085. doi: 10.1002/glia.23827. Epub 2020 Mar 14.

Abstract

Myelin loss in the brain is a common occurrence in traumatic brain injury (TBI) that results from impact-induced acceleration forces to the head. Fast and abrupt head motions, either resulting from violent blows and/or jolts, cause rapid stretching of the brain tissue, and the long axons within the white matter tracts are especially vulnerable to such mechanical strain. Recent studies have shown that mechanotransduction plays an important role in regulating oligodendrocyte progenitors cell differentiation into oligodendrocytes. However, little is known about the impact of mechanical strain on mature oligodendrocytes and the stability of their associated myelin sheaths. We used an in vitro cellular stretch device to address these questions, as well as characterize a mechanotransduction mechanism that mediates oligodendrocyte responses. Mechanical stretch caused a transient and reversible myelin protein loss in oligodendrocytes. Cell death was not observed. Myelin protein loss was accompanied by an increase in intracellular Ca and Erk1/2 activation. Chelating Ca or inhibiting Erk1/2 activation was sufficient to block the stretch-induced loss of myelin protein. Further biochemical analyses revealed that the stretch-induced myelin protein loss was mediated by the release of Ca from the endoplasmic reticulum (ER) and subsequent Ca -dependent activation of Erk1/2. Altogether, our findings characterize an Erk1/2-dependent mechanotransduction mechanism in mature oligodendrocytes that de-stabilizes the myelination program.

摘要

脑内髓鞘丢失是创伤性脑损伤(TBI)的常见现象,是由头部受到撞击引起的加速力引起的。快速和突然的头部运动,无论是由于剧烈的打击和/或颠簸引起的,都会导致脑组织的快速拉伸,而白质束内的长轴突特别容易受到这种机械应变的影响。最近的研究表明,力学转导在调节少突胶质细胞前体细胞分化为少突胶质细胞中起着重要作用。然而,对于机械应变对成熟少突胶质细胞及其相关髓鞘鞘稳定性的影响知之甚少。我们使用体外细胞拉伸装置来解决这些问题,并描述介导少突胶质细胞反应的力学转导机制。机械拉伸导致少突胶质细胞中的髓鞘蛋白发生短暂和可逆的丢失。没有观察到细胞死亡。髓鞘蛋白丢失伴随着细胞内 Ca 增加和 Erk1/2 激活。螯合 Ca 或抑制 Erk1/2 激活足以阻止拉伸诱导的髓鞘蛋白丢失。进一步的生化分析表明,拉伸诱导的髓鞘蛋白丢失是通过内质网(ER)中 Ca 的释放和随后 Ca 依赖性 Erk1/2 的激活介导的。总之,我们的研究结果描述了成熟少突胶质细胞中依赖 Erk1/2 的力学转导机制,该机制使髓鞘化程序不稳定。

相似文献

引用本文的文献

本文引用的文献

1
Dynamics of oligodendrocyte generation in multiple sclerosis.多发性硬化症中少突胶质细胞生成的动力学。
Nature. 2019 Feb;566(7745):538-542. doi: 10.1038/s41586-018-0842-3. Epub 2019 Jan 23.
2
The adult oligodendrocyte can participate in remyelination.成体少突胶质细胞可参与髓鞘修复。
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11807-E11816. doi: 10.1073/pnas.1808064115. Epub 2018 Nov 28.
6
Ca activity signatures of myelin sheath formation and growth in vivo.体内髓鞘形成和生长的 Ca 活性特征。
Nat Neurosci. 2018 Jan;21(1):19-23. doi: 10.1038/s41593-017-0040-x. Epub 2017 Dec 11.
9
Modulation of Oligodendrocyte Differentiation by Mechanotransduction.机械转导对少突胶质细胞分化的调节
Front Cell Neurosci. 2016 Nov 29;10:277. doi: 10.3389/fncel.2016.00277. eCollection 2016.
10
Integrin-mediated mechanotransduction.整合素介导的机械转导
J Cell Biol. 2016 Nov 21;215(4):445-456. doi: 10.1083/jcb.201609037. Epub 2016 Nov 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验