Suppr超能文献

锌预插层稳定了MnO纳米线的隧道结构,并实现了具有电池级能量密度的锌离子混合超级电容器。

Zn Pre-Intercalation Stabilizes the Tunnel Structure of MnO Nanowires and Enables Zinc-Ion Hybrid Supercapacitor of Battery-Level Energy Density.

作者信息

Chen Qiang, Jin Jialun, Kou Zongkui, Liao Cong, Liu Ziang, Zhou Liang, Wang John, Mai Liqiang

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.

Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.

出版信息

Small. 2020 Apr;16(14):e2000091. doi: 10.1002/smll.202000091. Epub 2020 Mar 16.

Abstract

Although there has been tremendous progress in exploring new configurations of zinc-ion hybrid supercapacitors (Zn-HSCs) recently, the much lower energy density, especially the much lower areal energy density compared with that of the rechargeable battery, is still the bottleneck, which is impeding their wide applications in wearable devices. Herein, the pre-intercalation of Zn which gives rise to a highly stable tunnel structure of Zn MnO in nanowire form that are grown on flexible carbon cloth with a disruptively large mass loading of 12 mg cm is reported. More interestingly, the Zn MnO nanowires of tunnel structure enable an ultrahigh areal energy density and power density, when they are employed as the cathode in Zn-HSCs. The achieved areal capacitance of up to 1745.8 mF cm at 2 mA cm , and the remarkable areal energy density of 969.9 µWh cm are comparable favorably with those of Zn-ion batteries. When integrated into a quasi-solid-state device, they also endow outstanding mechanical flexibility. The truly battery-level Zn-HSCs are timely in filling up of the battery-supercapacitor gap, and promise applications in the new generation flexible and wearable devices.

摘要

尽管近年来在探索锌离子混合超级电容器(Zn-HSCs)的新结构方面取得了巨大进展,但与可充电电池相比,其能量密度,尤其是面积能量密度低得多,仍然是瓶颈,这阻碍了它们在可穿戴设备中的广泛应用。在此,报道了锌的预嵌入,这导致了以纳米线形式生长在柔性碳布上的ZnMnO具有高度稳定的隧道结构,其质量负载高达12 mg cm,具有破坏性的大。更有趣的是,当隧道结构的ZnMnO纳米线用作Zn-HSCs的阴极时,它们能够实现超高的面积能量密度和功率密度。在2 mA cm时实现的面积电容高达1745.8 mF cm,以及969.9 µWh cm的显著面积能量密度,与锌离子电池相比具有良好的可比性。当集成到准固态器件中时,它们还具有出色的机械柔韧性。真正的电池级Zn-HSCs及时填补了电池-超级电容器的差距,并有望应用于新一代柔性和可穿戴设备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验