Suppr超能文献

具有高容量活性炭阳极和VO(B)阴极的平面锌离子微型电容器。

Planar Zn-Ion Microcapacitors with High-Capacity Activated Carbon Anode and VO (B) Cathode.

作者信息

Fan Yujia, Pinnock Iman, Hu Xueqing, Wang Tianlei, Lu Yinan, Li Ruixiang, Wang Mingqing, Parkin Ivan P, De Volder Michael, Boruah Buddha Deka

机构信息

Institute for Materials Discovery, University College London, London WC1E 7JE, United Kingdom.

Department of Chemistry, University College London, London, WC1H 0AJ, U.K.

出版信息

Nano Lett. 2024 Sep 4;24(35):10874-10882. doi: 10.1021/acs.nanolett.4c02539. Epub 2024 Aug 20.

Abstract

The downsizing of microscale energy storage devices plays a crucial role in powering modern emerging devices. Therefore, the scientific focus on developing high-performance microdevices, balancing energy density and power density, becomes essential. In this context, we explore an advanced Microplotter technique to fabricate hybrid planar Zn-ion microcapacitors (ZIMCs) that exhibit dual charge storage characteristics, with an electrical double layer capacitor type activated carbon anode and a battery type VO (B) cathode, aiming to achieve energy density surpassing supercapacitors and power density exceeding batteries. Effective loading of VO (B) cathode electrode materials combined with activated carbon anode onto confined planar microelectrodes not only provides reversible Zn storage performance but also mitigates dendrite formation. This not only results in superior charge storage performance, including areal energies of 2.34 μWh/cm (at 74.76 μW/cm) and 0.94 μWh/cm (at 753.12 μW/cm), exceeding performance of zinc nanoparticle anode and activated carbon cathode based ZIMCs, but also ensures stable capacity retention of 87% even after 1000 cycles and free from any unwanted dendrites. Consequently, this approach is directed toward the development of high-performance ZIMCs by exploring high-capacity materials for efficient utilization on microelectrodes and achieving maximum possible capacities within the constraints of the limited device footprint.

摘要

微型储能设备的小型化在为现代新兴设备供电方面起着至关重要的作用。因此,科学地专注于开发高性能的微型设备,平衡能量密度和功率密度,变得至关重要。在此背景下,我们探索了一种先进的微绘图技术来制造具有双电荷存储特性的混合平面锌离子微型电容器(ZIMC),其阳极采用双电层电容器型活性炭,阴极采用电池型VO(B),旨在实现超越超级电容器的能量密度和超过电池的功率密度。将VO(B)阴极电极材料与活性炭阳极有效地负载到受限的平面微电极上,不仅提供了可逆的锌存储性能,还减轻了枝晶的形成。这不仅带来了卓越的电荷存储性能,包括面积能量为2.34 μWh/cm²(在74.76 μW/cm²时)和0.94 μWh/cm²(在753.12 μW/cm²时),超过了基于锌纳米颗粒阳极和活性炭阴极的ZIMC的性能,而且即使在1000次循环后仍能确保87%的稳定容量保持率,且没有任何不需要的枝晶。因此,这种方法旨在通过探索高容量材料以在微电极上进行有效利用,并在有限的器件尺寸限制内实现最大可能的容量,从而开发高性能的ZIMC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c1c/11378291/943201dfd7d7/nl4c02539_0001.jpg

相似文献

1
Planar Zn-Ion Microcapacitors with High-Capacity Activated Carbon Anode and VO (B) Cathode.
Nano Lett. 2024 Sep 4;24(35):10874-10882. doi: 10.1021/acs.nanolett.4c02539. Epub 2024 Aug 20.
2
3
Improving Electrochemical Performance in Planar On-Chip Zn-ion Micro-Batteries via Interlayer Strategies.
Small. 2025 Feb;21(7):e2405733. doi: 10.1002/smll.202405733. Epub 2024 Oct 14.
4
Advanced Porous Gold-PANI Micro-Electrodes for High-Performance On-Chip Micro-Supercapacitors.
Nano Lett. 2024 Sep 4;24(35):11059-11066. doi: 10.1021/acs.nanolett.4c03194. Epub 2024 Aug 26.
5
Zn-Ion Hybrid Micro-Supercapacitors with Ultrahigh Areal Energy Density and Long-Term Durability.
Adv Mater. 2019 Jan;31(3):e1806005. doi: 10.1002/adma.201806005. Epub 2018 Nov 27.
6
Towards High-Performance Zinc-Based Hybrid Supercapacitors via Macropores-Based Charge Storage in Organic Electrolytes.
Angew Chem Int Ed Engl. 2021 Apr 19;60(17):9610-9617. doi: 10.1002/anie.202014766. Epub 2021 Mar 17.
7
A ZIF-8 Host for Dendrite-Free Zinc Anodes and N,O Dual-doped Carbon Cathodes for High-Performance Zinc-Ion Hybrid Capacitors.
Chem Asian J. 2021 Aug 2;16(15):2146-2153. doi: 10.1002/asia.202100526. Epub 2021 Jun 26.
8
Vertical Graphene Film Enables High-Performance Quasi-Solid-State Planar Zinc-Ion Microbatteries.
ACS Appl Mater Interfaces. 2023 Feb 22;15(7):9486-9493. doi: 10.1021/acsami.2c22043. Epub 2023 Feb 8.
9
Fabrications of High-Performance Planar Zinc-Ion Microbatteries by Engraved Soft Templates.
Small. 2021 Mar;17(12):e2007389. doi: 10.1002/smll.202007389. Epub 2021 Mar 3.
10
All-Solid-State Planar Sodium-Ion Microcapacitors with Multidirectional Fast Ion Diffusion Pathways.
Adv Sci (Weinh). 2019 Oct 4;6(23):1902147. doi: 10.1002/advs.201902147. eCollection 2019 Dec.

引用本文的文献

1
Design of Porous 3D Interdigitated Current Collectors and Hybrid Microcathodes for Zn-Ion Microcapacitors.
ACS Nano. 2025 Apr 8;19(13):13314-13324. doi: 10.1021/acsnano.5c00917. Epub 2025 Mar 25.

本文引用的文献

1
Printable Zinc-Ion Hybrid Micro-Capacitors for Flexible Self-Powered Integrated Units.
Nanomicro Lett. 2020 Nov 5;13(1):19. doi: 10.1007/s40820-020-00546-7.
2
A New Free-Standing Aqueous Zinc-Ion Capacitor Based on MnO-CNTs Cathode and MXene Anode.
Nanomicro Lett. 2019 Aug 26;11(1):70. doi: 10.1007/s40820-019-0301-1.
4
3D-Printed Zn-Ion Hybrid Capacitor Enabled by Universal Divalent Cation-Gelated Additive-Free TiC MXene Ink.
ACS Nano. 2021 Feb 23;15(2):3098-3107. doi: 10.1021/acsnano.0c09646. Epub 2021 Feb 12.
6
7
Additive-free MXene inks and direct printing of micro-supercapacitors.
Nat Commun. 2019 Apr 17;10(1):1795. doi: 10.1038/s41467-019-09398-1.
8
Zn-Ion Hybrid Micro-Supercapacitors with Ultrahigh Areal Energy Density and Long-Term Durability.
Adv Mater. 2019 Jan;31(3):e1806005. doi: 10.1002/adma.201806005. Epub 2018 Nov 27.
9
Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium.
Chem Rev. 2018 Jul 25;118(14):6457-6498. doi: 10.1021/acs.chemrev.8b00116. Epub 2018 Jun 28.
10
Ultrafast Zn Intercalation and Deintercalation in Vanadium Dioxide.
Adv Mater. 2018 Jun;30(26):e1800762. doi: 10.1002/adma.201800762. Epub 2018 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验