Suppr超能文献

一种基于融合智能环境理解方法的自定进度脑机接口原型系统,用于康复医院环境控制。

A self-paced BCI prototype system based on the incorporation of an intelligent environment-understanding approach for rehabilitation hospital environmental control.

作者信息

Liu Yaru, Liu Yadong, Tang Jingsheng, Yin Erwei, Hu Dewen, Zhou Zongtan

机构信息

College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China.

Unmanned Systems Research Center, National Institute of Defense Technology Innovation, Academy of Military Sciences China, Beijing, 100081, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin, 300450, China.

出版信息

Comput Biol Med. 2020 Mar;118:103618. doi: 10.1016/j.compbiomed.2020.103618. Epub 2020 Jan 15.

Abstract

This paper presents a self-paced brain-computer interface (BCI) based on the incorporation of an intelligent environment-understanding approach into a motor imagery (MI) BCI system for rehabilitation hospital environmental control. The interface integrates four types of daily assistance tasks: medical calls, service calls, appliance control and catering services. The system introduces intelligent environment understanding technology to establish preliminary predictions concerning a user's control intention by extracting potential operational objects in the current environment through an object detection neural network. According to the characteristics of the four types of control and services, we establish different response mechanisms and use an intelligent decision-making method to design and dynamically optimize the relevant control instruction set. The control feedback is communicated to the user via voice prompts; it avoids the use of visual channels throughout the interaction. The asynchronous and synchronous modes of the MI-BCI are designed to launch the control process and to select specific operations, respectively. In particular, the reliability of the MI-BCI is enhanced by the optimized identification algorithm. An online experiment demonstrated that the system can respond quickly and it generates an activation command in an average of 3.38s while effectively preventing false activations; the average accuracy of the BCI synchronization commands was 89.2%, which represents sufficiently effective control. The proposed system is efficient, applicable and can be used to both improve system information throughput and to reduce mental loads. The proposed system can be used to assist with the daily lives of patients with severe motor impairments.

摘要

本文提出了一种基于将智能环境理解方法融入运动想象脑机接口(BCI)系统的自定进度脑机接口,用于康复医院环境控制。该接口集成了四种日常辅助任务:医疗呼叫、服务呼叫、设备控制和餐饮服务。该系统引入智能环境理解技术,通过目标检测神经网络提取当前环境中的潜在操作对象,从而对用户的控制意图进行初步预测。根据四种控制和服务类型的特点,我们建立了不同的响应机制,并使用智能决策方法设计和动态优化相关控制指令集。控制反馈通过语音提示传达给用户;在整个交互过程中避免使用视觉通道。运动想象脑机接口的异步和同步模式分别用于启动控制过程和选择特定操作。特别是,通过优化的识别算法提高了运动想象脑机接口的可靠性。一项在线实验表明,该系统响应迅速,平均3.38秒就能生成激活命令,同时有效防止误激活;脑机接口同步命令的平均准确率为89.2%,这代表了足够有效的控制。所提出的系统高效、适用,可用于提高系统信息吞吐量和减轻心理负担。该系统可用于协助严重运动障碍患者的日常生活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验