Suppr超能文献

用于在电阻式器件阵列上训练神经网络的算法

Algorithm for Training Neural Networks on Resistive Device Arrays.

作者信息

Gokmen Tayfun, Haensch Wilfried

机构信息

IBM Research AI, Yorktown Heights, NY, United States.

出版信息

Front Neurosci. 2020 Feb 26;14:103. doi: 10.3389/fnins.2020.00103. eCollection 2020.

Abstract

Hardware architectures composed of resistive cross-point device arrays can provide significant power and speed benefits for deep neural network training workloads using stochastic gradient descent (SGD) and backpropagation (BP) algorithm. The training accuracy on this imminent analog hardware, however, strongly depends on the switching characteristics of the cross-point elements. One of the key requirements is that these resistive devices must change conductance in a symmetrical fashion when subjected to positive or negative pulse stimuli. Here, we present a new training algorithm, so-called the "Tiki-Taka" algorithm, that eliminates this stringent symmetry requirement. We show that device asymmetry introduces an unintentional implicit cost term into the SGD algorithm, whereas in the "Tiki-Taka" algorithm a coupled dynamical system simultaneously minimizes the original objective function of the neural network and the unintentional cost term due to device asymmetry in a self-consistent fashion. We tested the validity of this new algorithm on a range of network architectures such as fully connected, convolutional and LSTM networks. Simulation results on these various networks show that the accuracy achieved using the conventional SGD algorithm with symmetric (ideal) device switching characteristics is matched in accuracy achieved using the "Tiki-Taka" algorithm with non-symmetric (non-ideal) device switching characteristics. Moreover, all the operations performed on the arrays are still parallel and therefore the implementation cost of this new algorithm on array architectures is minimal; and it maintains the aforementioned power and speed benefits. These algorithmic improvements are crucial to relax the material specification and to realize technologically viable resistive crossbar arrays that outperform digital accelerators for similar training tasks.

摘要

由电阻式交叉点器件阵列组成的硬件架构,对于使用随机梯度下降(SGD)和反向传播(BP)算法的深度神经网络训练工作负载而言,能够带来显著的功率和速度优势。然而,在这种即将出现的模拟硬件上的训练精度,在很大程度上取决于交叉点元件的开关特性。其中一个关键要求是,这些电阻式器件在受到正脉冲或负脉冲刺激时,必须以对称方式改变电导。在此,我们提出一种新的训练算法,即所谓的“Tiki-Taka”算法,它消除了这一严格的对称性要求。我们表明,器件不对称会在SGD算法中引入一个无意的隐式成本项,而在“Tiki-Taka”算法中,一个耦合动力系统会以自洽的方式同时最小化神经网络的原始目标函数以及由器件不对称导致的无意成本项。我们在一系列网络架构上测试了这种新算法的有效性,如全连接网络、卷积网络和长短期记忆(LSTM)网络。在这些不同网络上的仿真结果表明,使用具有对称(理想)器件开关特性的传统SGD算法所达到的精度,与使用具有非对称(非理想)器件开关特性的“Tiki-Taka”算法所达到的精度相当。此外,在阵列上执行的所有操作仍然是并行的,因此这种新算法在阵列架构上的实现成本极低;并且它保持了上述的功率和速度优势。这些算法改进对于放宽材料规格要求以及实现技术上可行的电阻式交叉开关阵列至关重要,这种阵列在类似训练任务中性能优于数字加速器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4782/7054461/07153f501504/fnins-14-00103-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验