Onen Murat, Gokmen Tayfun, Todorov Teodor K, Nowicki Tomasz, Del Alamo Jesús A, Rozen John, Haensch Wilfried, Kim Seyoung
IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States.
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States.
Front Artif Intell. 2022 May 9;5:891624. doi: 10.3389/frai.2022.891624. eCollection 2022.
Analog crossbar arrays comprising programmable non-volatile resistors are under intense investigation for acceleration of deep neural network training. However, the ubiquitous asymmetric conductance modulation of practical resistive devices critically degrades the classification performance of networks trained with conventional algorithms. Here we first describe the fundamental reasons behind this incompatibility. Then, we explain the theoretical underpinnings of a novel fully-parallel training algorithm that is compatible with asymmetric crosspoint elements. By establishing a powerful analogy with classical mechanics, we explain how device asymmetry can be exploited as a useful feature for analog deep learning processors. Instead of conventionally tuning weights in the direction of the error function gradient, network parameters can be programmed to successfully minimize the total energy (Hamiltonian) of the system that incorporates the effects of device asymmetry. Our technique enables immediate realization of analog deep learning accelerators based on readily available device technologies.
由可编程非易失性电阻器组成的模拟交叉开关阵列正在接受深入研究,以加速深度神经网络训练。然而,实际电阻器件普遍存在的不对称电导调制严重降低了使用传统算法训练的网络的分类性能。在这里,我们首先描述这种不兼容性背后的基本原因。然后,我们解释一种与不对称交叉点元件兼容的新型全并行训练算法的理论基础。通过与经典力学建立有力的类比,我们解释了如何将器件不对称性作为模拟深度学习处理器的一个有用特征加以利用。与传统上沿误差函数梯度方向调整权重不同,网络参数可以被编程,以成功地最小化包含器件不对称性影响的系统的总能量(哈密顿量)。我们的技术能够基于现有的器件技术立即实现模拟深度学习加速器。