Agarwal Sapan, Quach Tu-Thach, Parekh Ojas, Hsia Alexander H, DeBenedictis Erik P, James Conrad D, Marinella Matthew J, Aimone James B
Microsystems Science and Technology, Sandia National Laboratories Albuquerque, NM, USA.
Sensor Exploitation, Sandia National Laboratories Albuquerque, NM, USA.
Front Neurosci. 2016 Jan 6;9:484. doi: 10.3389/fnins.2015.00484. eCollection 2015.
The exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-based architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.
在过去十年中,数据呈指数级增长,这给那些试图为各种应用处理和解释此类数据的分析工作带来了重大挑战。为了利用在生物系统中观察到的模拟、低功耗数据处理的计算特性,人们正在开发受神经启发的计算方法。模拟电阻式存储器交叉开关可以高效地执行并行读取或向量矩阵乘法,以及并行写入或秩1更新。对于一个N×N的交叉开关,这两种内核的能源效率可比传统的基于数字存储器的架构高O(N)。如果读取操作受噪声限制,读取一列的能量可以与交叉开关大小无关(O(1))。这两种内核构成了许多神经形态算法的基础,如图像、文本和语音识别。例如,当以有限精度运行时,这些内核可以应用于神经稀疏编码算法,使整个算法的能量降低O(N)。稀疏编码是一个丰富的问题,有许多应用,包括计算机视觉、目标跟踪,以及更广泛的无监督学习。