Suppr超能文献

快速且稳健的模拟内存深度神经网络训练

Fast and robust analog in-memory deep neural network training.

作者信息

Rasch Malte J, Carta Fabio, Fagbohungbe Omobayode, Gokmen Tayfun

机构信息

IBM Research, TJ Watson Research Center, Yorktown Heights, NY, USA.

Sony AI, Zürich, Switzerland.

出版信息

Nat Commun. 2024 Aug 20;15(1):7133. doi: 10.1038/s41467-024-51221-z.

Abstract

Analog in-memory computing is a promising future technology for efficiently accelerating deep learning networks. While using in-memory computing to accelerate the inference phase has been studied extensively, accelerating the training phase has received less attention, despite its arguably much larger compute demand to accelerate. While some analog in-memory training algorithms have been suggested, they either invoke significant amount of auxiliary digital compute-accumulating the gradient in digital floating point precision, limiting the potential speed-up-or suffer from the need for near perfectly programming reference conductance values to establish an algorithmic zero point. Here, we propose two improved algorithms for in-memory training, that retain the same fast runtime complexity while resolving the requirement of a precise zero point. We further investigate the limits of the algorithms in terms of conductance noise, symmetry, retention, and endurance which narrow down possible device material choices adequate for fast and robust in-memory deep neural network training.

摘要

模拟内存计算是一种很有前景的未来技术,可有效加速深度学习网络。虽然利用内存计算来加速推理阶段已得到广泛研究,但加速训练阶段却较少受到关注,尽管加速训练阶段的计算需求可能要大得多。虽然已经提出了一些模拟内存训练算法,但它们要么需要大量的辅助数字计算——以数字浮点精度累积梯度,从而限制了潜在的加速效果——要么需要近乎完美地编程参考电导值来建立算法零点。在此,我们提出了两种用于内存训练的改进算法,它们在解决精确零点要求的同时,保持了相同的快速运行时复杂度。我们还进一步研究了算法在电导噪声、对称性、保持性和耐久性方面的限制,这些限制缩小了适用于快速且稳健的内存深度神经网络训练的可能的器件材料选择范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17f3/11335942/f68f6b836702/41467_2024_51221_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验