Kratzer Gilles, Lewis Fraser I, Willi Barbara, Meli Marina L, Boretti Felicitas S, Hofmann-Lehmann Regina, Torgerson Paul, Furrer Reinhard, Hartnack Sonja
Department of Mathematics, University of Zurich, Zurich, Switzerland.
Independent Researcher, Utrecht, Netherlands.
Front Vet Sci. 2020 Feb 26;7:73. doi: 10.3389/fvets.2020.00073. eCollection 2020.
Bayesian network (BN) modeling is a rich and flexible analytical framework capable of elucidating complex veterinary epidemiological data. It is a graphical modeling technique that enables the visual presentation of multi-dimensional results while retaining statistical rigor in population-level inference. Using previously published case study data about feline calicivirus (FCV) and other respiratory pathogens in cats in Switzerland, a full BN modeling analysis is presented. The analysis shows that reducing the group size and vaccinating animals are the two actionable factors directly associated with FCV status and are primary targets to control FCV infection. The presence of gingivostomatitis and is also associated with FCV status, but signs of upper respiratory tract disease (URTD) are not. FCV data is particularly well-suited to a network modeling approach, as both multiple pathogens and multiple clinical signs per pathogen are involved, along with multiple potentially interrelated risk factors. BN modeling is a holistic approach-all variables of interest may be mutually interdependent-which may help to address issues, such as confounding and collinear factors, as well as to disentangle directly vs. indirectly related variables. We introduce the BN methodology as an alternative to the classical uni- and multivariable regression approaches commonly used for risk factor analyses. We advise and guide researchers about how to use BNs as an exploratory data tool and demonstrate the limitations and practical issues. We present a step-by-step case study using FCV data along with all code necessary to reproduce our analyses in the open-source R environment. We compare and contrast the findings of the current case study using BN modeling with previous results that used classical regression techniques, and we highlight new potential insights. Finally, we discuss advanced methods, such as Bayesian model averaging, a common way of accounting for model uncertainty in a Bayesian network context.
贝叶斯网络(BN)建模是一个丰富且灵活的分析框架,能够阐释复杂的兽医流行病学数据。它是一种图形建模技术,能在保留群体水平推断统计严谨性的同时,实现多维结果的可视化呈现。利用先前发表的关于瑞士猫感染猫杯状病毒(FCV)及其他呼吸道病原体的案例研究数据,进行了全面的贝叶斯网络建模分析。分析表明,缩小群体规模和给动物接种疫苗是与FCV感染状况直接相关的两个可采取行动的因素,也是控制FCV感染的主要目标。牙龈口炎的存在也与FCV感染状况相关,但上呼吸道疾病(URTD)症状则不然。FCV数据特别适合采用网络建模方法,因为涉及多种病原体、每种病原体的多种临床症状以及多个可能相互关联的风险因素。贝叶斯网络建模是一种整体方法——所有感兴趣的变量可能相互依存——这有助于解决诸如混杂因素和共线因素等问题,以及理清直接相关变量与间接相关变量。我们引入贝叶斯网络方法作为通常用于风险因素分析的经典单变量和多变量回归方法的替代方法。我们就如何将贝叶斯网络用作探索性数据工具为研究人员提供建议和指导,并展示其局限性和实际问题。我们使用FCV数据呈现一个逐步的案例研究,以及在开源R环境中重现我们分析所需的所有代码。我们将当前使用贝叶斯网络建模的案例研究结果与先前使用经典回归技术的结果进行比较和对比,并突出新的潜在见解。最后,我们讨论先进方法,如贝叶斯模型平均法,这是在贝叶斯网络背景下考虑模型不确定性的常用方法。