Suppr超能文献

理解潮热背后的复杂关系:一种贝叶斯网络方法。

Understanding the complex relationships underlying hot flashes: a Bayesian network approach.

作者信息

Smith Rebecca L, Gallicchio Lisa M, Flaws Jodi A

机构信息

Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, IL.

Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD.

出版信息

Menopause. 2018 Feb;25(2):182-190. doi: 10.1097/GME.0000000000000959.

Abstract

OBJECTIVE

The mechanism underlying hot flashes is not well-understood, primarily because of complex relationships between and among hot flashes and their risk factors.

METHODS

We explored those relationships using a Bayesian network approach based on a 2006 to 2015 cohort study of hot flashes among 776 female residents, 45 to 54 years old, in the Baltimore area. Bayesian networks were fit for each outcome (current hot flashes, hot flashes before the end of the study, hot flash severity, hot flash frequency, and age at first hot flashes) separately and together with a list of risk factors (estrogen, progesterone, testosterone, body mass index and obesity, race, income level, education level, smoking history, drinking history, and activity level). Each fitting was conducted separately on all women and only perimenopausal women, at enrollment and 4 years after enrollment.

RESULTS

Hormone levels, almost always interrelated, were the most common variable linked to hot flashes; hormone levels were sometimes related to body mass index, but were not directly related to any other risk factors. Smoking was also frequently associated with increased likelihood of severe symptoms, but not through an antiestrogenic pathway. The age at first hot flashes was related only to race. All other factors were either not related to outcomes or were mediated entirely by race, hormone levels, or smoking.

CONCLUSIONS

These models can serve as a guide for design of studies into the causal network underlying hot flashes.

摘要

目的

潮热的潜在机制尚未完全明确,主要是因为潮热及其危险因素之间存在复杂的关系。

方法

我们基于2006年至2015年对巴尔的摩地区776名45至54岁女性居民进行的潮热队列研究,采用贝叶斯网络方法探索这些关系。分别针对每个结局(当前潮热、研究结束前的潮热、潮热严重程度、潮热频率和首次潮热年龄)以及一系列危险因素(雌激素、孕酮、睾酮、体重指数和肥胖、种族、收入水平、教育水平、吸烟史、饮酒史和活动水平)构建贝叶斯网络。每次构建分别在所有女性以及仅围绝经期女性中进行,在入组时和入组后4年进行。

结果

激素水平几乎总是相互关联的,是与潮热相关的最常见变量;激素水平有时与体重指数有关,但与任何其他危险因素无直接关系。吸烟也常常与严重症状的可能性增加有关,但并非通过抗雌激素途径。首次潮热年龄仅与种族有关。所有其他因素要么与结局无关,要么完全由种族、激素水平或吸烟介导。

结论

这些模型可为潮热潜在因果网络的研究设计提供指导。

相似文献

3
Smoking, body mass, and hot flashes in midlife women.中年女性的吸烟、体重与潮热
Obstet Gynecol. 2003 Feb;101(2):264-72. doi: 10.1016/s0029-7844(02)02593-0.
7
Physical activity and risk of hot flashes among women in midlife.中年女性的身体活动与潮热风险
J Womens Health (Larchmt). 2007 Jan-Feb;16(1):124-33. doi: 10.1089/jwh.2006.0046.
8
Association between race and hot flashes in midlife women.中年女性种族与潮热之间的关联。
Maturitas. 2006 Jun 20;54(3):260-9. doi: 10.1016/j.maturitas.2005.12.001. Epub 2006 Jan 19.
10
Body mass, estrogen levels, and hot flashes in midlife women.中年女性的体重、雌激素水平与潮热
Am J Obstet Gynecol. 2005 Oct;193(4):1353-60. doi: 10.1016/j.ajog.2005.04.001.

引用本文的文献

本文引用的文献

6
Hot flushes and reproductive hormone levels during the menopausal transition.绝经过渡期的潮热与生殖激素水平
Maturitas. 2016 Jul;89:43-51. doi: 10.1016/j.maturitas.2016.03.017. Epub 2016 Mar 24.
8
Chinese herbal medicine for menopausal symptoms.用于缓解更年期症状的中草药
Cochrane Database Syst Rev. 2016 Mar 15;3(3):CD009023. doi: 10.1002/14651858.CD009023.pub2.
10
Management of Menopausal Symptoms.更年期症状的管理
Obstet Gynecol. 2015 Oct;126(4):859-876. doi: 10.1097/AOG.0000000000001058.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验