Suppr超能文献

通过对来自外周血样本的微阵列数据进行交叉验证,鉴定出用于诊断自闭症谱系障碍的稳健非编码RNA特征。

Identification of a robust non-coding RNA signature in diagnosing autism spectrum disorder by cross-validation of microarray data from peripheral blood samples.

作者信息

Cheng Wei, Zhou Shanhu, Zhou Jinxia, Wang Xijia

机构信息

Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.

出版信息

Medicine (Baltimore). 2020 Mar;99(11):e19484. doi: 10.1097/MD.0000000000019484.

Abstract

Novel molecular signatures are needed to improve the early and accurate diagnosis of autism spectrum disorder (ASD), and indicate physicians to provide timely intervention. This study aimed to identify a robust blood non-coding RNA (ncRNA) signature in diagnosing ASD. One hundred eighty six blood samples in the microarray dataset were randomly divided into the training set (n = 112) and validation set (n = 72). Then, the microarray probe expression profile was re-annotated into the expression profile of 4143 ncRNAs though probe sequence mapping. In the training set, least absolute shrinkage and selection operator (LASSO) penalized generalized linear model was adopted to identify the 20-ncRNA signature, and a diagnostic score was calculated for each sample according to the ncRNA expression levels and the model coefficients. The score demonstrated an excellent diagnostic ability for ASD in the training set (area under receiver operating characteristic curve [AUC] = 0.96), validation set (AUC = 0.97) and the overall (AUC = 0.96). Moreover, the blood samples of 23 ASD patients and 23 age- and gender-matched controls were collected as the external validation set, in which the signature also showed a good diagnostic ability for ASD (AUC = 0.96). In subgroup analysis, the signature was also robust when considering the potential confounders of sex, age, and disease subtypes. In comparison with a 55-gene signature deriving from the same dataset, the ncRNA signature showed an obviously better diagnostic ability (AUC: 0.96 vs 0.68, P < .001). In conclusion, this study identified a robust blood ncRNA signature in diagnosing ASD, which might help improve the diagnostic accuracy for ASD in clinical practice.

摘要

需要新的分子特征来改善自闭症谱系障碍(ASD)的早期准确诊断,并指导医生及时进行干预。本研究旨在识别用于诊断ASD的可靠血液非编码RNA(ncRNA)特征。将微阵列数据集中的186份血液样本随机分为训练集(n = 112)和验证集(n = 72)。然后,通过探针序列映射将微阵列探针表达谱重新注释为4143个ncRNA的表达谱。在训练集中,采用最小绝对收缩和选择算子(LASSO)惩罚广义线性模型来识别20个ncRNA特征,并根据ncRNA表达水平和模型系数为每个样本计算诊断分数。该分数在训练集(受试者操作特征曲线下面积[AUC] = 0.96)、验证集(AUC = 0.97)和总体(AUC = 0.96)中对ASD显示出优异的诊断能力。此外,收集了23例ASD患者和23例年龄及性别匹配的对照的血液样本作为外部验证集,其中该特征对ASD也显示出良好的诊断能力(AUC = 0.96)。在亚组分析中,考虑性别、年龄和疾病亚型等潜在混杂因素时,该特征也很稳健。与从同一数据集中得出的55个基因特征相比,ncRNA特征显示出明显更好的诊断能力(AUC:0.96对0.68,P <.001)。总之,本研究识别出了用于诊断ASD的可靠血液ncRNA特征,这可能有助于提高临床实践中ASD的诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba4/7220435/c023995d2fde/medi-99-e19484-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验