Suppr超能文献

使用数据非依赖采集质谱技术提高血浆蛋白质组覆盖度的双工作流程。

A Dual Workflow to Improve the Proteomic Coverage in Plasma Using Data-Independent Acquisition-MS.

机构信息

Advanced Clinical Biosystems Research Institute, Barbra Streisand Women's Heart Center at the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States.

BGI Genomics, Shenzhen 518083, China.

出版信息

J Proteome Res. 2020 Jul 2;19(7):2828-2837. doi: 10.1021/acs.jproteome.9b00607. Epub 2020 Mar 30.

Abstract

Plasma is one of the most important and common matrices for clinical chemistry and proteomic analyses. Data-independent acquisition (DIA) mass spectrometry has enabled the simultaneous quantitative analysis of hundreds of proteins in plasma samples in support population and disease studies. Depletion of the highest abundant proteins is a common tool to increase plasma proteome coverage, but this strategy can result in the nonspecific depletion of protein subsets with which proteins targeted for depletion interact, adversely affecting their analysis. Our work using an antibody-based depletion column revealed significant complementarity not only in the identification of the proteins derived from depleted and undepleted plasma, but importantly also in the extent to which different proteins can be reproducibly quantified in each fraction. We systematically defined four major quantitative parameters of increasing stringency in both the depleted plasma fraction and in undepleted plasma for 757 observed plasma proteins: Linearity cutoff > 0.8; lower limit of quantification (LLOQ); measurement range; limit of detection (LOD). We applied the results of our study to build a web-based tool, PlasmaPilot, that can serve as a protocol decision tree to determine whether the analysis of a specific protein warrants IgY14 mediated depletion.

摘要

血浆是临床化学和蛋白质组学分析中最重要和最常见的基质之一。数据非依赖性采集(DIA)质谱技术使得能够同时定量分析血浆样品中的数百种蛋白质,支持人群和疾病研究。高丰度蛋白质的耗竭是增加血浆蛋白质组覆盖度的常用工具,但这种策略可能导致与目标蛋白质耗竭相互作用的蛋白质亚群的非特异性耗竭,从而对其分析产生不利影响。我们使用基于抗体的耗竭柱进行的工作不仅揭示了在鉴定来自耗竭和未耗竭血浆的蛋白质方面的显著互补性,而且还重要的是,在不同蛋白质在每个馏分中可重复性定量的程度方面具有显著互补性。我们系统地定义了四个主要的定量参数,这些参数在 757 种观察到的血浆蛋白的耗竭血浆部分和未耗竭血浆部分中逐渐增加严格程度:线性截止值> 0.8;定量下限(LLOQ);测量范围;检测限(LOD)。我们将我们的研究结果应用于构建一个基于网络的工具,PlasmaPilot,它可以作为协议决策树,以确定是否需要 IgY14 介导的耗竭来分析特定蛋白质。

相似文献

1
A Dual Workflow to Improve the Proteomic Coverage in Plasma Using Data-Independent Acquisition-MS.
J Proteome Res. 2020 Jul 2;19(7):2828-2837. doi: 10.1021/acs.jproteome.9b00607. Epub 2020 Mar 30.
4
An Optimized Data-Independent Acquisition Strategy for Comprehensive Analysis of Human Plasma Proteome.
Methods Mol Biol. 2023;2628:93-107. doi: 10.1007/978-1-0716-2978-9_7.
6
Rat plasma proteomics: effects of abundant protein depletion on proteomic analysis.
J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Apr 15;849(1-2):273-81. doi: 10.1016/j.jchromb.2006.11.051. Epub 2006 Dec 22.
7
SWATH Mass Spectrometry for Proteomics of Non-Depleted Plasma.
Methods Mol Biol. 2017;1619:373-383. doi: 10.1007/978-1-4939-7057-5_25.
8
High-Throughput Plasma Proteomic Profiling.
Methods Mol Biol. 2022;2546:411-420. doi: 10.1007/978-1-0716-2565-1_36.

引用本文的文献

3
Proteomics of : From the Lab to the Clinic.
Int J Mol Sci. 2021 Nov 17;22(22):12390. doi: 10.3390/ijms222212390.

本文引用的文献

1
Precision Medicine.
Circulation. 2018 Nov 13;138(20):2172-2174. doi: 10.1161/CIRCULATIONAHA.118.036781.
2
Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry.
J Proteome Res. 2018 Jan 5;17(1):420-428. doi: 10.1021/acs.jproteome.7b00623. Epub 2017 Nov 10.
3
Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry.
Nat Protoc. 2017 Aug;12(8):1683-1701. doi: 10.1038/nprot.2017.054. Epub 2017 Jul 27.
4
Quantitative Proteomics Based on Optimized Data-Independent Acquisition in Plasma Analysis.
J Proteome Res. 2017 Feb 3;16(2):665-676. doi: 10.1021/acs.jproteome.6b00727. Epub 2017 Jan 3.
5
Quantitative variability of 342 plasma proteins in a human twin population.
Mol Syst Biol. 2015 Feb 4;11(1):786. doi: 10.15252/msb.20145728.
6
DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics.
Nat Methods. 2015 Mar;12(3):258-64, 7 p following 264. doi: 10.1038/nmeth.3255. Epub 2015 Jan 19.
7
OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data.
Nat Biotechnol. 2014 Mar;32(3):219-23. doi: 10.1038/nbt.2841.
8
Performance evaluation of affinity ligands for depletion of abundant plasma proteins.
J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Nov 15;939:10-6. doi: 10.1016/j.jchromb.2013.09.008. Epub 2013 Sep 10.
9
Method and platform standardization in MRM-based quantitative plasma proteomics.
J Proteomics. 2013 Dec 16;95:66-76. doi: 10.1016/j.jprot.2013.07.026. Epub 2013 Aug 7.
10
An automated pipeline for high-throughput label-free quantitative proteomics.
J Proteome Res. 2013 Apr 5;12(4):1628-44. doi: 10.1021/pr300992u. Epub 2013 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验