Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, United States of America.
Department of Bioengineering, University of California, Los Angeles, California, United States of America.
PLoS Genet. 2020 Mar 16;16(3):e1008703. doi: 10.1371/journal.pgen.1008703. eCollection 2020 Mar.
The assembly status of the V. cholerae flagellum regulates biofilm formation, suggesting that the bacterium senses a lack of movement to commit to a sessile lifestyle. Motility and biofilm formation are inversely regulated by the second messenger molecule cyclic dimeric guanosine monophosphate (c-di-GMP). Therefore, we sought to define the flagellum-associated c-di-GMP-mediated signaling pathways that regulate the transition from a motile to a sessile state. Here we report that elimination of the flagellum, via loss of the FlaA flagellin, results in a flagellum-dependent biofilm regulatory (FDBR) response, which elevates cellular c-di-GMP levels, increases biofilm gene expression, and enhances biofilm formation. The strength of the FDBR response is linked with status of the flagellar stator: it can be reversed by deletion of the T ring component MotX, and reduced by mutations altering either the Na+ binding ability of the stator or the Na+ motive force. Absence of the stator also results in reduction of mannose-sensitive hemagglutinin (MSHA) pilus levels on the cell surface, suggesting interconnectivity of signal transduction pathways involved in biofilm formation. Strains lacking flagellar rotor components similarly launched an FDBR response, however this was independent of the status of assembly of the flagellar stator. We found that the FDBR response requires at least three specific diguanylate cyclases that contribute to increased c-di-GMP levels, and propose that activation of biofilm formation during this response relies on c-di-GMP-dependent activation of positive regulators of biofilm production. Together our results dissect how flagellum assembly activates c-di-GMP signaling circuits, and how V. cholerae utilizes these signals to transition from a motile to a sessile state.
霍乱弧菌鞭毛的组装状态调节生物膜的形成,这表明细菌感知到缺乏运动,从而决定采取静止的生活方式。运动性和生物膜形成受到第二信使分子环二鸟苷酸(c-di-GMP)的反向调节。因此,我们试图确定与鞭毛相关的 c-di-GMP 介导的信号通路,这些信号通路调节从运动状态向静止状态的转变。在这里,我们报告说,通过消除 FlaA 鞭毛蛋白来消除鞭毛,会导致依赖于鞭毛的生物膜调节(FDBR)反应,从而提高细胞内 c-di-GMP 水平,增加生物膜基因表达,并增强生物膜形成。FDBR 反应的强度与鞭毛定子的状态有关:它可以通过删除 T 环组件 MotX 来逆转,并通过改变定子的 Na+结合能力或 Na+动力势的突变来降低。定子的缺失也会导致细胞表面甘露糖敏感血凝素(MSHA)菌毛水平的降低,这表明参与生物膜形成的信号转导途径是相互关联的。缺乏鞭毛转子组件的菌株也会引发 FDBR 反应,但这与鞭毛定子的组装状态无关。我们发现,FDBR 反应至少需要三种特定的双鸟苷酸环化酶来增加 c-di-GMP 水平,并提出在这种反应中,生物膜形成的激活依赖于 c-di-GMP 依赖性激活生物膜产生的正调控因子。总之,我们的研究结果剖析了鞭毛组装如何激活 c-di-GMP 信号通路,以及霍乱弧菌如何利用这些信号从运动状态过渡到静止状态。