Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada.
Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
Mol Neurodegener. 2020 Mar 16;15(1):21. doi: 10.1186/s13024-020-00369-5.
Frontotemporal lobar degeneration (FTLD) is a devastating and progressive disorder, and a common cause of early onset dementia. Progranulin (PGRN) haploinsufficiency due to autosomal dominant mutations in the progranulin gene (GRN) is an important cause of FTLD (FTLD-GRN), and nearly a quarter of these genetic cases are due to a nonsense mutation. Premature termination codons (PTC) can be therapeutically targeted by compounds allowing readthrough, and aminoglycoside antibiotics are known to be potent PTC readthrough drugs. Restoring endogenous PGRN through PTC readthrough has not previously been explored as a therapeutic intervention in FTLD.
We studied whether the aminoglycoside G418 could increase PGRN expression in HEK293 and human induced pluripotent stem cell (hiPSC)-derived neurons bearing the heterozygous S116X, R418X, and R493X pathogenic GRN nonsense mutations. We further tested a novel substituted phthalimide PTC readthrough enhancer in combination with G418 in our cellular models. We next generated a homozygous R493X knock-in hiPSC isogenic line (R493X KI), assessing whether combination treatment in hiPSC-derived neurons and astrocytes could increase PGRN and ameliorate lysosomal dysfunction relevant to FTLD-GRN. To provide in vivo proof-of-concept of our approach, we measured brain PGRN after intracerebroventricular administration of G418 in mice expressing the V5-tagged GRN nonsense mutation R493X.
The R418X and R493X mutant GRN cell lines responded to PTC readthrough with G418, and treatments increased PGRN levels in R493X KI hiPSC-derived neurons and astrocytes. Combining G418 with a PTC readthrough enhancer increased PGRN levels over G418 treatment alone in vitro. PGRN deficiency has been shown to impair lysosomal function, and the mature form of the lysosomal protease cathepsin D is overexpressed in R493X KI neurons. Increasing PGRN through G418-mediated PTC readthrough normalized this abnormal lysosomal phenotype in R493X KI neuronal cultures. A single intracerebroventricular injection of G418 induced GRN PTC readthrough in 6-week-old AAV-GRN-R493X-V5 mice.
Taken together, our findings suggest that PTC readthrough may be a potential therapeutic strategy for FTLD caused by GRN nonsense mutations.
额颞叶变性(FTLD)是一种破坏性的进行性疾病,也是早发性痴呆的常见病因。原颗粒蛋白(PGRN)由于常染色体显性突变导致原颗粒蛋白基因(GRN)的单倍体不足是 FTLD(FTLD-GRN)的一个重要原因,这些遗传病例中有近四分之一是由于无意义突变引起的。提前终止密码子(PTC)可以通过允许通读的化合物进行治疗性靶向,氨基糖苷类抗生素是已知的有效的 PTC 通读药物。通过 PTC 通读恢复内源性 PGRN 作为 FTLD 的治疗干预措施以前尚未被探索过。
我们研究了氨基糖苷类抗生素 G418 是否可以增加携带杂合 S116X、R418X 和 R493X 致病性 GRN 无意义突变的 HEK293 和人诱导多能干细胞(hiPSC)衍生神经元中的 PGRN 表达。我们进一步在我们的细胞模型中测试了一种新型取代邻苯二甲酰亚胺 PTC 通读增强剂与 G418 的联合应用。接下来,我们生成了一个纯合 R493X 敲入 hiPSC 同基因系(R493X KI),评估在 hiPSC 衍生神经元和星形胶质细胞中的联合治疗是否可以增加 PGRN 并改善与 FTLD-GRN 相关的溶酶体功能障碍。为了提供我们方法的体内概念验证,我们在表达 V5 标记的 GRN 无意义突变 R493X 的小鼠中测量了脑内 G418 给药后脑内 PGRN。
R418X 和 R493X 突变的 GRN 细胞系对 PTC 通读有反应,G418 治疗增加了 R493X KI hiPSC 衍生神经元和星形胶质细胞中的 PGRN 水平。在体外,与 G418 治疗相比,联合使用 PTC 通读增强剂可增加 PGRN 水平。PGRN 缺乏已被证明会损害溶酶体功能,并且成熟形式的溶酶体蛋白酶组织蛋白酶 D 在 R493X KI 神经元中过度表达。通过 G418 介导的 PTC 通读增加 PGRN 可使 R493X KI 神经元培养物中的这种异常溶酶体表型正常化。单次侧脑室注射 G418 可诱导 6 周龄 AAV-GRN-R493X-V5 小鼠中的 GRN PTC 通读。
总之,我们的研究结果表明,PTC 通读可能是 GRN 无意义突变引起的 FTLD 的一种潜在治疗策略。