Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
Acta Neuropathol Commun. 2020 Oct 7;8(1):163. doi: 10.1186/s40478-020-01037-x.
Heterozygous, loss-of-function mutations in the granulin gene (GRN) encoding progranulin (PGRN) are a common cause of frontotemporal dementia (FTD). Homozygous GRN mutations cause neuronal ceroid lipofuscinosis-11 (CLN11), a lysosome storage disease. PGRN is a secreted glycoprotein that can be proteolytically cleaved into seven bioactive 6 kDa granulins. However, it is unclear how deficiency of PGRN and granulins causes neurodegeneration. To gain insight into the mechanisms of FTD pathogenesis, we utilized Tandem Mass Tag isobaric labeling mass spectrometry to perform an unbiased quantitative proteomic analysis of whole-brain tissue from wild type (Grn) and Grn knockout (Grn) mice at 3- and 19-months of age. At 3-months lysosomal proteins (i.e. Gns, Scarb2, Hexb) are selectively increased indicating lysosomal dysfunction is an early consequence of PGRN deficiency. Additionally, proteins involved in lipid metabolism (Acly, Apoc3, Asah1, Gpld1, Ppt1, and Naaa) are decreased; suggesting lysosomal degradation of lipids may be impaired in the Grn brain. Systems biology using weighted correlation network analysis (WGCNA) of the Grn brain proteome identified 26 modules of highly co-expressed proteins. Three modules strongly correlated to Grn deficiency and were enriched with lysosomal proteins (Gpnmb, CtsD, CtsZ, and Tpp1) and inflammatory proteins (Lgals3, GFAP, CD44, S100a, and C1qa). We find that lysosomal dysregulation is exacerbated with age in the Grn mouse brain leading to neuroinflammation, synaptic loss, and decreased markers of oligodendrocytes, myelin, and neurons. In particular, GPNMB and LGALS3 (galectin-3) were upregulated by microglia and elevated in FTD-GRN brain samples, indicating common pathogenic pathways are dysregulated in human FTD cases and Grn mice. GPNMB levels were significantly increased in the cerebrospinal fluid of FTD-GRN patients, but not in MAPT or C9orf72 carriers, suggesting GPNMB could be a biomarker specific to FTD-GRN to monitor disease onset, progression, and drug response. Our findings support the idea that insufficiency of PGRN and granulins in humans causes neurodegeneration through lysosomal dysfunction, defects in autophagy, and neuroinflammation, which could be targeted to develop effective therapies.
颗粒蛋白前体 (PGRN) 基因 (GRN) 的杂合、功能丧失突变是额颞叶痴呆 (FTD) 的常见原因。GRN 纯合突变导致神经元蜡样质脂褐质沉积症 11 型 (CLN11),这是一种溶酶体贮积病。PGRN 是一种分泌的糖蛋白,可被蛋白水解酶切割成七种具有生物活性的 6kDa 颗粒素。然而,PGRN 和颗粒素缺乏如何导致神经退行性变尚不清楚。为了深入了解 FTD 发病机制,我们利用串联质量标签等压标记质谱法对 3 个月和 19 个月龄野生型 (Grn) 和 Grn 敲除 (Grn) 小鼠的全脑组织进行了无偏定量蛋白质组学分析。在 3 个月时,溶酶体蛋白 (即 Gns、Scarb2、Hexb) 选择性增加,表明 PGRN 缺乏的早期后果是溶酶体功能障碍。此外,参与脂质代谢的蛋白质 (Acly、Apoc3、Asah1、Gpld1、Ppt1 和 Naaa) 减少;表明 Grn 脑内的溶酶体降解脂质可能受损。使用 Grn 脑蛋白质组的加权相关网络分析 (WGCNA) 进行的系统生物学研究鉴定了 26 个高度共表达蛋白模块。三个与 Grn 缺乏强烈相关的模块富含溶酶体蛋白 (Gpnmb、CtsD、CtsZ 和 Tpp1) 和炎症蛋白 (Lgals3、GFAP、CD44、S100a 和 C1qa)。我们发现,Grn 小鼠大脑中的溶酶体失调随着年龄的增长而加剧,导致神经炎症、突触丢失以及少突胶质细胞、髓鞘和神经元标记物减少。特别是,GPNMB 和 LGALS3(半乳糖凝集素 3)被小胶质细胞上调,并在 FTD-GRN 脑样本中升高,表明人类 FTD 病例和 Grn 小鼠中失调的共同致病途径。FTD-GRN 患者的脑脊液中 GPNMB 水平显著升高,但 MAPT 或 C9orf72 携带者中没有升高,这表明 GPNMB 可能是监测疾病发作、进展和药物反应的 FTD-GRN 特异性生物标志物。我们的研究结果支持这样一种观点,即人类 PGRN 和颗粒素的不足通过溶酶体功能障碍、自噬缺陷和神经炎症导致神经退行性变,这可能成为开发有效治疗方法的靶点。