Suppr超能文献

鉴定突变热点揭示 KCNQ2 癫痫性脑病的发病机制。

Identifying mutation hotspots reveals pathogenetic mechanisms of KCNQ2 epileptic encephalopathy.

机构信息

Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.

Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.

出版信息

Sci Rep. 2020 Mar 16;10(1):4756. doi: 10.1038/s41598-020-61697-6.

Abstract

K7 channels are enriched at the axonal plasma membrane where their voltage-dependent potassium currents suppress neuronal excitability. Mutations in K7.2 and K7.3 subunits cause epileptic encephalopathy (EE), yet the underlying pathogenetic mechanism is unclear. Here, we used novel statistical algorithms and structural modeling to identify EE mutation hotspots in key functional domains of K7.2 including voltage sensing S4, the pore loop and S6 in the pore domain, and intracellular calmodulin-binding helix B and helix B-C linker. Characterization of selected EE mutations from these hotspots revealed that L203P at S4 induces a large depolarizing shift in voltage dependence of K7.2 channels and L268F at the pore decreases their current densities. While L268F severely reduces expression of heteromeric channels in hippocampal neurons without affecting internalization, K552T and R553L mutations at distal helix B decrease calmodulin-binding and axonal enrichment. Importantly, L268F, K552T, and R553L mutations disrupt current potentiation by increasing phosphatidylinositol 4,5-bisphosphate (PIP), and our molecular dynamics simulation suggests PIP interaction with these residues. Together, these findings demonstrate that each EE variant causes a unique combination of defects in K7 channel function and neuronal expression, and suggest a critical need for both prediction algorithms and experimental interrogations to understand pathophysiology of K7-associated EE.

摘要

K7 通道在轴突质膜中丰富,其电压依赖性钾电流抑制神经元兴奋性。K7.2 和 K7.3 亚基的突变导致癫痫性脑病 (EE),但其潜在的发病机制尚不清楚。在这里,我们使用新的统计算法和结构建模来识别 K7.2 关键功能域中的 EE 突变热点,包括电压感应 S4、孔环和孔域中的 S6 以及细胞内钙调蛋白结合螺旋 B 和螺旋 B-C 接头。从这些热点中鉴定出的 EE 突变的特征表明,S4 上的 L203P 诱导 K7.2 通道电压依赖性的大去极化偏移,而 L268F 在孔中降低其电流密度。虽然 L268F 严重降低了海马神经元中异源通道的表达,而不影响内化,但远侧螺旋 B 上的 L552F、K552T 和 R553L 突变会降低钙调蛋白结合和轴突富集。重要的是,L268F、K552T 和 R553L 突变通过增加磷脂酰肌醇 4,5-二磷酸 (PIP) 来破坏电流增强,我们的分子动力学模拟表明 PIP 与这些残基相互作用。总之,这些发现表明每个 EE 变体都会导致 K7 通道功能和神经元表达的独特缺陷组合,并表明需要预测算法和实验研究来理解与 K7 相关的 EE 的病理生理学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验