Suppr超能文献

孔域脑病的多种分子和细胞机制。

Plural molecular and cellular mechanisms of pore domain encephalopathy.

作者信息

Abreo Timothy J, Thompson Emma C, Madabushi Anuraag, Park Kristen L, Soh Heun, Varghese Nissi, Vanoye Carlos G, Springer Kristen, Johnson Jim, Sims Scotty, Ji Zhigang, Chavez Ana G, Jankovic Miranda J, Habte Bereket, Zuberi Aamir R, Lutz Cathleen M, Wang Zhao, Krishnan Vaishnav, Dudler Lisa, Einsele-Scholz Stephanie, Noebels Jeffrey L, George Alfred L, Maheshwari Atul, Tzingounis Anastasios, Cooper Edward C

机构信息

Department of Neurology, Baylor College of Medicine, Houston, United States.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.

出版信息

Elife. 2025 Jan 6;13:RP91204. doi: 10.7554/eLife.91204.

Abstract

variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path. Co-expression with G256W dominantly suppressed conduction by wild-type subunits in heterologous cells. Ezogabine partly reversed this suppression. mice have epilepsy leading to premature deaths. Hippocampal CA1 pyramidal cells from G256W/+ brain slices showed hyperexcitability. G256W/+ pyramidal cell KCNQ2 and KCNQ3 immunolabeling was significantly shifted from axon initial segments to neuronal somata. Despite normal mRNA levels, G256W/+ mouse KCNQ2 protein levels were reduced by about 50%. Our findings indicate that G256W pathogenicity results from multiplicative effects, including reductions in intrinsic conduction, subcellular targeting, and protein stability. These studies provide evidence for an unexpected and novel role for the KCNQ2 pore turret and introduce a valid animal model of encephalopathy. Our results, spanning structure to behavior, may be broadly applicable because the majority of encephalopathy patients share variants near the selectivity filter.

摘要

由于神经发育障碍儿童的基因变异具有异质性且致病机制不明,因此难以评估。我们描述了一名患有新生儿期癫痫、中度发育障碍且为G256W杂合子的儿童。分析先前的KCNQ2通道冷冻电子显微镜模型发现,G256是连接S5、孔道塔和离子通道的拱形非共价键网络的一个节点。在异源细胞中,G256W与野生型亚基共表达时会显著抑制其传导。依佐加滨可部分逆转这种抑制作用。携带G256W变异的小鼠患有癫痫并导致过早死亡。来自G256W/+小鼠脑片的海马CA1锥体细胞表现出过度兴奋性。G256W/+锥体细胞的KCNQ2和KCNQ3免疫标记从轴突起始段显著转移至神经元胞体。尽管mRNA水平正常,但G256W/+小鼠的KCNQ2蛋白水平降低了约50%。我们的研究结果表明,G256W的致病性源于多种效应,包括内在传导降低、亚细胞定位改变和蛋白质稳定性下降。这些研究为KCNQ2孔道塔的一个意外且新的作用提供了证据,并引入了一种有效的脑病动物模型。我们从结构到行为的研究结果可能具有广泛的适用性,因为大多数脑病患者在选择性过滤器附近存在变异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe49/11703504/b803dd89f16d/elife-91204-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验