Suppr超能文献

[NiFe]氢化酶催化反应的机制与应用:最新进展。

Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments.

机构信息

MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Department of Chemistry, Yanbian University, Park Road 977, Yanji, 133002, Jilin, China.

Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.

出版信息

Chembiochem. 2020 Jun 2;21(11):1573-1581. doi: 10.1002/cbic.202000058. Epub 2020 Apr 2.

Abstract

Hydrogenases (H ase) catalyze the oxidation of dihydrogen and the reduction of protons with remarkable efficiency, thereby attracting considerable attention in the energy field due to their biotechnological potential. For this simple reaction, [NiFe] H ase has developed a sophisticated but intricate mechanism with the heterolytic cleavage of dihydrogen, where its Ni-Fe active site exhibits various redox states. Recently, new spectroscopic and crystal structure studies of [NiFe] H ases have been reported, providing significant insights into the catalytic reaction mechanism, hydrophobic gas-access tunnel, proton-transfer pathway, and electron-transfer pathway of [NiFe] H ases. In addition, [NiFe] H ases have been shown to play an important role in biofuel cell and solar dihydrogen production. This concept provides an overview of the biocatalytic reaction mechanism and biochemical application of [NiFe] H ases based on the new findings.

摘要

氢化酶(Hase)能够高效地催化氢气的氧化和质子的还原,因此在能源领域具有重要的生物技术应用潜力,引起了广泛关注。对于这个简单的反应,[NiFe]氢化酶发展出了一种复杂而精巧的机制,其中氢气发生异裂,其 Ni-Fe 活性中心呈现出多种氧化还原态。最近,有关 [NiFe]氢化酶的新光谱和晶体结构研究已经报道,为催化反应机制、疏水性气体进入隧道、质子转移途径和 [NiFe]氢化酶的电子转移途径提供了重要的见解。此外,[NiFe]氢化酶在生物燃料电池和太阳能制氢中也发挥着重要作用。本综述基于最新研究成果,概述了 [NiFe]氢化酶的生物催化反应机制和生化应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验