Suppr超能文献

基于电子鼻和模糊Foley-Sammon变换的中国醋品种分类

Classification of Chinese vinegar varieties using electronic nose and fuzzy Foley-Sammon transformation.

作者信息

Wu Xiao-Hong, Zhu Jin, Wu Bin, Huang Da-Peng, Sun Jun, Dai Chun-Xia

机构信息

1School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China.

2Key Laboratory of Facility Agriculture Measurement and Control Technology and Equipment of Machinery Industry, Jiangsu University, Zhenjiang, China.

出版信息

J Food Sci Technol. 2020 Apr;57(4):1310-1319. doi: 10.1007/s13197-019-04165-y. Epub 2019 Nov 13.

Abstract

Due to the difference of raw materials and brewing technology, the quality and flavours of vinegar are different. Different kinds of vinegar have different functions and effects. Therefore, it is important to classify the vinegar varieties correctly. This work presented a new fuzzy feature extraction algorithm, called fuzzy Foley-Sammon transformation (FFST), and designed the electronic nose (E-nose) system for classifying vinegar varieties successfully. Principal component analysis (PCA) and standard normal variate (SNV) were used as the data preprocessing algorithms for the E-nose system. FFST, Foley-Sammon transformation (FST) and linear discriminant analysis (LDA) were used to extract discriminant information from E-nose data, respectively. Then, nearest neighbor (KNN) served as a classifier for the classification of vinegar varieties. The highest identification accuracy rate was 96.92% by using the FFST and KNN. Therefore, the E-nose system combined with the FFST was an effective method to identify Chinese vinegar varieties and this method has wide application prospects.

摘要

由于原材料和酿造工艺的差异,醋的品质和风味各不相同。不同种类的醋具有不同的功能和功效。因此,正确对醋的品种进行分类很重要。这项工作提出了一种新的模糊特征提取算法,称为模糊Foley-Sammon变换(FFST),并成功设计了用于醋品种分类的电子鼻(E-nose)系统。主成分分析(PCA)和标准正态变量变换(SNV)被用作E-nose系统的数据预处理算法。FFST、Foley-Sammon变换(FST)和线性判别分析(LDA)分别用于从E-nose数据中提取判别信息。然后,最近邻(KNN)用作醋品种分类的分类器。使用FFST和KNN时,最高识别准确率为96.92%。因此,结合FFST的E-nose系统是识别中国醋品种的有效方法,该方法具有广阔的应用前景。

相似文献

本文引用的文献

4
Electronic noses: Powerful tools in meat quality assessment.电子鼻:肉质评估的有力工具。
Meat Sci. 2017 Sep;131:119-131. doi: 10.1016/j.meatsci.2017.04.240. Epub 2017 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验