Saha Puja, Panda Deepanjan, Müller Diana, Maity Arunabha, Schwalbe Harald, Dash Jyotirmayee
School of Chemical Sciences , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India . Email:
Institute of Organic Chemistry and Chemical Biology , Center for Biomolecular Magnetic Resonance (BMRZ) , Goethe University , Max-von-Laue Strasse 7 , Frankfurt , D-60438 , Germany.
Chem Sci. 2020 Feb 18;11(8):2058-2067. doi: 10.1039/d0sc00514b. eCollection 2020 Feb 28.
Non-canonical DNA i-motifs and G-quadruplexes are postulated as genetic switches for the transcriptional regulation of proto-oncogenes. However, in comparison to G-quadruplexes, the therapeutic potential of i-motifs is less explored. The development of i-motif selective ligands by conventional approaches is challenging due to the structural complexity of i-motifs. The target guided synthetic (TGS) approach involving cycloaddition could provide specific ligands for these dynamic DNA structures. Herein, we have used i-motif forming C-rich DNA and their complementary G-quadruplex forming DNA sequences of and promoter regions as well as a control self-complementary duplex DNA sequence as the templates to generate selective ligands from a pool of reactive azide-alkyne building blocks. In our approach, thiolated DNA targets are immobilized on the surface of gold-coated iron nanoparticles to enable efficient isolation of the newly generated ligands from the solution mixture by simple magnetic decantation. The combinatorial cycloaddition generated cell-membrane permeable triazole leads for respective DNA targets ( and i-motifs and G-quadruplexes) that selectively promote their formation. cellular studies reveal that the i-motif and G-quadruplex leads downregulate gene expression whereas the i-motif lead upregulates and the G-quadruplex lead represses gene expression. The TGS strategy using i-motif DNA nanotemplates represents a promising platform for the direct formation of i-motif specific ligands for therapeutic intervention.
非经典DNA i-基序和G-四链体被认为是原癌基因转录调控的遗传开关。然而,与G-四链体相比,i-基序的治疗潜力尚未得到充分探索。由于i-基序的结构复杂性,通过传统方法开发i-基序选择性配体具有挑战性。涉及环加成的靶向导向合成(TGS)方法可以为这些动态DNA结构提供特异性配体。在此,我们使用形成i-基序的富含C的DNA及其在 和 启动子区域的互补G-四链体形成DNA序列,以及一个对照自互补双链DNA序列作为模板,从一系列反应性叠氮化物-炔烃构建块中生成选择性配体。在我们的方法中,硫醇化DNA靶标固定在金包覆的铁纳米颗粒表面,以便通过简单的磁性倾析从溶液混合物中高效分离新生成的配体。组合环加成产生了针对各自DNA靶标( 和 i-基序以及G-四链体)的细胞膜可渗透的三唑先导物,这些先导物选择性地促进它们的形成。细胞研究表明,i-基序和G-四链体先导物下调 基因表达,而i-基序先导物上调,G-四链体先导物抑制 基因表达。使用i-基序DNA纳米模板的TGS策略代表了一个有前景的平台,可直接形成用于治疗干预的i-基序特异性配体。