Suppr超能文献

通过真菌生物质吸附和漆酶酶处理有效去除偶氮染料橙II

Efficient removal of azo-dye Orange II by fungal biomass absorption and laccase enzymatic treatment.

作者信息

Riegas-Villalobos Aurora, Martínez-Morales Fernando, Tinoco-Valencia Raunel, Serrano-Carreón Leobardo, Bertrand Brandt, Trejo-Hernández María R

机构信息

1Laboratorio de Biotecnología Ambiental, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos Mexico.

2Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico.

出版信息

3 Biotech. 2020 Apr;10(4):146. doi: 10.1007/s13205-020-2150-5. Epub 2020 Mar 2.

Abstract

In this study, the exact contribution of fungal biomass and laccase in the removal of the Orange II dye from liquid culture was determined. Biomass and laccase were produced with three different carbon sources [bran flakes (BF), wheat bran (WB) and wheat flour (WF)]. The contribution of the biomass and the laccase enzyme in the removal of the Orange II dye was assessed as follows: (A) in vivo treatment with fungal biomass; in vivo treatment with fungal biomass and inhibited laccase (using 0.6 mM sodium azide); and (B) in vitro treatment with crude laccase. The results of fungal biomass production were similar for all the carbon sources evaluated, while laccase volumetric activities were different. The highest enzyme production was obtained with WB, followed by BF and WF. In the in vivo treatment with fungal biomass-laccase, dye removal was over 84% for all the carbon sources. Dye adsorption by fungal biomass varied from 1.5-2%, presenting enzymatic activities ranging from 62 to 163 U L. In the in vivo treatment with fungal biomass-inhibited laccase, the removal of the dye varied from 30 to 72%. In this case, the percentage of dye adsorption by fungal biomass was significantly increased and ranged from 18 to 53%. In the in vitro treatment with laccase, the removal ranged from 80 to 84%. The best treatment for dye removal involved the use of both fungal biomass and laccase. The carbon source for biomass and laccase production had an impact on dye removal.

摘要

在本研究中,确定了真菌生物量和漆酶在从液体培养物中去除橙II染料方面的确切贡献。使用三种不同的碳源[麸皮片(BF)、麦麸(WB)和小麦粉(WF)]生产生物量和漆酶。评估了生物量和漆酶在去除橙II染料方面的贡献,具体如下:(A)用真菌生物量进行体内处理;用真菌生物量和抑制的漆酶(使用0.6 mM叠氮化钠)进行体内处理;以及(B)用粗漆酶进行体外处理。对于所有评估的碳源,真菌生物量的产生结果相似,而漆酶的体积活性不同。使用WB获得的酶产量最高,其次是BF和WF。在用真菌生物量-漆酶进行体内处理时,所有碳源的染料去除率均超过84%。真菌生物量对染料的吸附率在1.5%-2%之间,酶活性范围为62至163 U/L。在用真菌生物量-抑制的漆酶进行体内处理时,染料去除率在30%至72%之间。在这种情况下,真菌生物量对染料的吸附百分比显著增加,范围为18%至53%。在用漆酶进行体外处理时,去除率在80%至84%之间。去除染料的最佳处理方法是同时使用真菌生物量和漆酶。用于生产生物量和漆酶的碳源对染料去除有影响。

相似文献

1
Efficient removal of azo-dye Orange II by fungal biomass absorption and laccase enzymatic treatment.
3 Biotech. 2020 Apr;10(4):146. doi: 10.1007/s13205-020-2150-5. Epub 2020 Mar 2.
2
Degradation of Orange G by laccase: fungal versus enzymatic process.
Environ Technol. 2007 Oct;28(10):1103-10. doi: 10.1080/09593332808618874.
4
Decolourization and detoxification of monoazo dyes by laccase from the white-rot fungus Trametes versicolor.
J Biotechnol. 2018 Nov 10;285:84-90. doi: 10.1016/j.jbiotec.2018.08.011. Epub 2018 Aug 29.
5
Decolorization of Textile Azo Dye via Solid-State Fermented Wheat Bran by sp. YZH1.
J Fungi (Basel). 2023 Nov 1;9(11):1069. doi: 10.3390/jof9111069.
6
7
Thermokinetic comparison of trypan blue decolorization by free laccase and fungal biomass.
Appl Biochem Biotechnol. 2014 Mar;172(6):2932-44. doi: 10.1007/s12010-014-0731-7. Epub 2014 Jan 25.
8
Heat shock treatment improves Trametes versicolor laccase production.
Appl Biochem Biotechnol. 2012 Sep;168(2):256-65. doi: 10.1007/s12010-012-9769-6. Epub 2012 Jun 26.
9
Laccase production by free and immobilized mycelia of Peniophora cinerea and Trametes versicolor: a comparative study.
Bioprocess Biosyst Eng. 2013 Mar;36(3):365-73. doi: 10.1007/s00449-012-0793-2. Epub 2012 Aug 4.

引用本文的文献

2
Adsorption of textile dyes from aqueous solutions onto clay: Kinetic modelling and equilibrium isotherm analysis.
Front Chem. 2023 Mar 30;11:1156457. doi: 10.3389/fchem.2023.1156457. eCollection 2023.
3
Adsorption of anionic dyes from textile wastewater utilizing raw corncob.
Heliyon. 2022 Aug 11;8(8):e10092. doi: 10.1016/j.heliyon.2022.e10092. eCollection 2022 Aug.
4
Recent advances in biodecolorization and biodegradation of environmental threatening textile finishing dyes.
3 Biotech. 2022 Sep;12(9):186. doi: 10.1007/s13205-022-03247-7. Epub 2022 Jul 21.
6

本文引用的文献

1
Decolorization of synthetic brilliant green carpet industry dye through fungal co-culture technology.
J Environ Manage. 2016 Sep 15;180:172-9. doi: 10.1016/j.jenvman.2016.04.060. Epub 2016 Jun 1.
2
Decolourisation of Different Dyes by two Strains Under Various Growth Conditions.
Water Air Soil Pollut. 2014;225(2):1846. doi: 10.1007/s11270-013-1846-0. Epub 2014 Jan 22.
3
Induction of laccases in Trametes versicolor by aqueous wood extracts.
World J Microbiol Biotechnol. 2014 Jan;30(1):135-42. doi: 10.1007/s11274-013-1420-3. Epub 2013 Jul 17.
4
Degradation of Orange G by laccase: fungal versus enzymatic process.
Environ Technol. 2007 Oct;28(10):1103-10. doi: 10.1080/09593332808618874.
5
Decolorization of a dye industry effluent by Aspergillus fumigatus XC6.
Appl Microbiol Biotechnol. 2007 Feb;74(1):239-43. doi: 10.1007/s00253-006-0658-1. Epub 2006 Nov 4.
6
Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions.
Appl Environ Microbiol. 2005 Nov;71(11):6711-8. doi: 10.1128/AEM.71.11.6711-6718.2005.
8
Removal of synthetic dyes from wastewaters: a review.
Environ Int. 2004 Sep;30(7):953-71. doi: 10.1016/j.envint.2004.02.001.
9
Mechanism of textile metal dye biotransformation by Trametes versicolor.
Water Res. 2004 Apr;38(8):2166-72. doi: 10.1016/j.watres.2004.01.019.
10
White-rot fungi and their enzymes for the treatment of industrial dye effluents.
Biotechnol Adv. 2003 Dec;22(1-2):161-87. doi: 10.1016/j.biotechadv.2003.08.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验