Kumar Punit, Tripathi Archana, Luthra Umesh, Dubey Kashyap Kumar
1Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana India.
2Biotechnology Engineering Branch, University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak, Rohtak, Haryana India.
3 Biotech. 2020 Apr;10(4):151. doi: 10.1007/s13205-020-2147-0. Epub 2020 Mar 3.
produces bioactive metabolite recognized as lipstatin and its intermediate orlistat. The main focus of this study is to enhance lipstatin production by strain improvement and precursor feeding. In this study, strain improvement to enhance the production of lipstatin was carried out by different doses (50, 100, 150, 200, and 250 Gy) of gamma radiation and precursors (Linoleic acid, Oleic acid, and l-Leucine). Screening showed that the highest yield of lipstatin (4.58 mg/g) was produced by mutant designated as SRN 7. The production of lipstatin (5.011 mg/g) increased significantly when the medium was supplemented with ratio 1:1.5 (linoleic acid + oleic acid). The addition of 1.5% l-Leucine leads to further increment in the production of lipstatin (5.765 mg/g). The addition of 10% soy flour in the culture medium resulted in the maximum production of lipstatin to 5.886 mg/g.
产生被认为是脂抑素及其中间体奥利司他的生物活性代谢物。本研究的主要重点是通过菌株改良和前体添加来提高脂抑素的产量。在本研究中,通过不同剂量(50、100、150、200和250 Gy)的γ辐射和前体(亚油酸、油酸和L-亮氨酸)进行菌株改良以提高脂抑素的产量。筛选表明,命名为SRN 7的突变体产生的脂抑素产量最高(4.58 mg/g)。当培养基以1:1.5的比例添加(亚油酸 + 油酸)时,脂抑素的产量(5.011 mg/g)显著增加。添加1.5%的L-亮氨酸导致脂抑素产量进一步提高(5.765 mg/g)。在培养基中添加10%的大豆粉可使脂抑素的产量达到最大值5.886 mg/g。