Suppr超能文献

使用可诱导转录因子和全转录组时间序列学习因果网络。

Learning causal networks using inducible transcription factors and transcriptome-wide time series.

机构信息

Calico Life Sciences LLC, South San Francisco, CA, USA.

Google Research, Mountain View, CA, USA.

出版信息

Mol Syst Biol. 2020 Mar;16(3):e9174. doi: 10.15252/msb.20199174.

Abstract

We present IDEA (the Induction Dynamics gene Expression Atlas), a dataset constructed by independently inducing hundreds of transcription factors (TFs) and measuring timecourses of the resulting gene expression responses in budding yeast. Each experiment captures a regulatory cascade connecting a single induced regulator to the genes it causally regulates. We discuss the regulatory cascade of a single TF, Aft1, in detail; however, IDEA contains > 200 TF induction experiments with 20 million individual observations and 100,000 signal-containing dynamic responses. As an application of IDEA, we integrate all timecourses into a whole-cell transcriptional model, which is used to predict and validate multiple new and underappreciated transcriptional regulators. We also find that the magnitudes of coefficients in this model are predictive of genetic interaction profile similarities. In addition to being a resource for exploring regulatory connectivity between TFs and their target genes, our modeling approach shows that combining rapid perturbations of individual genes with genome-scale time-series measurements is an effective strategy for elucidating gene regulatory networks.

摘要

我们呈现了 IDEA(诱导动力学基因表达图谱),这是一个通过独立诱导数百个转录因子(TFs)并测量由此产生的基因表达响应的时间过程构建的数据集。每个实验都捕获了一个调节级联,将单个诱导调节剂连接到它因果调节的基因上。我们详细讨论了单个 TF(Aft1)的调节级联;然而,IDEA 包含超过 200 个 TF 诱导实验,具有 2000 万个单独的观察值和 10 万个包含信号的动态响应。作为 IDEA 的应用,我们将所有时间过程整合到一个全细胞转录模型中,该模型用于预测和验证多个新的和未被充分认识的转录调节剂。我们还发现,该模型中系数的幅度可预测遗传相互作用谱的相似性。除了作为探索 TFs 与其靶基因之间的调节连接的资源外,我们的建模方法还表明,将单个基因的快速扰动与基因组规模的时间序列测量相结合是阐明基因调控网络的有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cac8/7076914/c359a8f42fc4/MSB-16-e9174-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验