Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign , Urbana, Illinois, USA.
Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois, USA.
Microbiol Spectr. 2024 Jan 11;12(1):e0253623. doi: 10.1128/spectrum.02536-23. Epub 2023 Nov 29.
is a promising industrial chassis to produce biofuels and bioproducts due to its high tolerance to multiple environmental stresses such as low pH, heat, and other chemicals otherwise toxic for the most widely used microbes. Yet, little is known about specific mechanisms of such tolerance in this organism, hindering our ability to engineer this species to produce valuable biochemicals. Here, we report a comprehensive study of the mechanisms of acidic tolerance in this species via transcriptome profiling across variable pH for 12 different strains with different phenotypes. We found multiple regulatory mechanisms involved in tolerance to low pH in different strains of , marking potential targets for future gene editing and perturbation experiments.
由于能够耐受多种环境压力,例如低 pH 值、高温和其他对大多数常用微生物有毒的化学物质,因此是生产生物燃料和生物制品的有前途的工业底盘。然而,对于该生物的这种耐受性的特定机制知之甚少,这阻碍了我们对该物种进行工程改造以生产有价值的生物化学物质的能力。在这里,我们通过对 12 种不同表型的菌株在不同 pH 值下进行转录组谱分析,对该物种的耐酸性机制进行了全面研究。我们发现了多种与不同菌株耐低 pH 值有关的调节机制,这为未来的基因编辑和扰动实验标记了潜在的靶点。