School of Biological Sciences, University of Bristol, Bristol, United Kingdom.
Department of Ecology, University of Innsbruck, Innsbruck, Austria.
Mol Biol Evol. 2020 Aug 1;37(8):2211-2227. doi: 10.1093/molbev/msaa076.
Understanding how organisms adapt to extreme environments is fundamental and can provide insightful case studies for both evolutionary biology and climate-change biology. Here, we take advantage of the vast diversity of lifestyles in ants to identify genomic signatures of adaptation to extreme habitats such as high altitude. We hypothesized two parallel patterns would occur in a genome adapting to an extreme habitat: 1) strong positive selection on genes related to adaptation and 2) a relaxation of previous purifying selection. We tested this hypothesis by sequencing the high-elevation specialist Tetramorium alpestre and four other phylogenetically related species. In support of our hypothesis, we recorded a strong shift of selective forces in T. alpestre, in particular a stronger magnitude of diversifying and relaxed selection when compared with all other ants. We further disentangled candidate molecular adaptations in both gene expression and protein-coding sequence that were identified by our genome-wide analyses. In particular, we demonstrate that T. alpestre has 1) a higher level of expression for stv and other heat-shock proteins in chill-shock tests and 2) enzymatic enhancement of Hex-T1, a rate-limiting regulatory enzyme that controls the entry of glucose into the glycolytic pathway. Together, our analyses highlight the adaptive molecular changes that support colonization of high-altitude environments.
了解生物如何适应极端环境是基础,可以为进化生物学和气候变化生物学提供有见地的案例研究。在这里,我们利用蚂蚁生活方式的多样性,确定了适应高海拔等极端栖息地的基因组特征。我们假设,在适应极端环境的基因组中,会出现两种平行的模式:1)与适应相关的基因受到强烈的正选择,2)之前的净化选择放松。我们通过对高海拔专业蚂蚁 Tetramorium alpestre 和其他四个系统发育相关的物种进行测序来验证这一假设。我们的研究结果支持了我们的假设,记录了 T. alpestre 中选择压力的强烈转变,特别是与所有其他蚂蚁相比,多样化选择和放松选择的幅度更大。我们进一步通过全基因组分析,分离了在基因表达和蛋白质编码序列中鉴定出的候选分子适应。特别是,我们证明了 T. alpestre 1)在冷休克测试中具有更高水平的 stv 和其他热休克蛋白的表达,2)Hex-T1 的酶增强,Hex-T1 是一种限速调节酶,控制葡萄糖进入糖酵解途径。总之,我们的分析强调了支持高海拔环境殖民化的适应性分子变化。