Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, Kingdom of Saudi Arabia.
PLoS One. 2020 Mar 17;15(3):e0230540. doi: 10.1371/journal.pone.0230540. eCollection 2020.
Halide vacancies and associated metallic lead (Pb°) observed at the surface and deep inside macroscopic organolead trihalide perovskite crystals is removed through a facile and noninvasive treatment. Indeed, Br2 vapor is shown to passivate Br-vacancies and associated Pb° in the bulk of macroscopic crystals. Controlling the exposure time can markedly improve the overall stoichiometry for moderate exposures or introduce excessive bromide for long exposures, resulting in p-doping of the crystals. In the low dose passivation regime, Hall effect measurements reveal a ca. 3-fold increase in carrier mobility to ca. 15 cm2V-1s-1, while the p-doping increases the electrical conductivity ca. 10000-fold, including a 50-fold increase in carrier mobility to ca. 150 cm2V-1s-1. The ease of diffusion of Br2 vapor into macroscopic crystals is ascribed to the porosity allowed in rapidly grown crystals through aggregative processes of the colloidal sol during growth of films and macroscopic crystals. This process is believed to form significant growth defects, including open voids, which may be remnants of the escaping solvent at the solidification front. These results suggest that due to the sol-gel-like nature of the growth process, macroscopic perovskite crystals reported in this study are far from perfect and point to possible pathways to improving the optoelectronic properties of these materials. Nevertheless, the ability of the vapor-phase approach to access and tune the bulk chemistry and properties of nominally macroscopic perovskite crystals provides interesting new opportunities to precisely manipulate and functionalize the bulk properties of hybrid perovskite crystals in a noninvasive manner.
卤化物空位和与之相关的金属铅(Pb°)在宏观有机卤化铅钙钛矿晶体的表面和内部深处被一种简单且非侵入性的处理方法去除。实际上,已经证明 Br2 蒸气可以使宏观晶体内部的 Br 空位和与之相关的 Pb°钝化。控制暴露时间可以显著改善适度暴露时的整体化学计量比,或者在长时间暴露时引入过量的溴化物,从而导致晶体的 p 掺杂。在低剂量钝化的情况下,霍尔效应测量表明载流子迁移率增加了约 3 倍,达到约 15 cm2V-1s-1,而 p 掺杂使电导率增加了约 10000 倍,包括载流子迁移率增加了约 50 倍,达到约 150 cm2V-1s-1。Br2 蒸气容易扩散到宏观晶体中,这归因于在胶体溶胶的聚合过程中允许快速生长的晶体具有多孔性,从而在薄膜和宏观晶体的生长过程中。这一过程被认为形成了显著的生长缺陷,包括开放的空隙,这可能是在凝固前沿逃逸溶剂的残留物。这些结果表明,由于生长过程的溶胶-凝胶性质,本研究中报道的宏观钙钛矿晶体远非完美,并指出了可能的途径来改善这些材料的光电性能。尽管如此,气相方法能够进入并调整名义上的宏观钙钛矿晶体的体化学性质和性质,这为以非侵入性方式精确地操纵和功能化杂化钙钛矿晶体的体性质提供了有趣的新机会。