Suppr超能文献

采用双模板策略设计具有可控结构和形成机理的树枝状大孔介孔硅纳米粒子。

Design of Dendritic Large-Pore Mesoporous Silica Nanoparticles with Controlled Structure and Formation Mechanism in Dual-Templating Strategy.

机构信息

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China.

Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 22;12(16):18823-18832. doi: 10.1021/acsami.0c00596. Epub 2020 Mar 25.

Abstract

Dendritic large-pore mesoporous silica nanoparticles (DLMSN) is an important biodegradable drug carrier due to its high porosity, which can be prepared by coassembly of a major template and an auxiliary template in aqueous solution, followed by hydrolysis of tetraethyl orthosilicate (TEOS). The auxiliary template is key to obtaining dendritic large-pore structures; however, how to choose the auxiliary template to obtain the desired pore structure is largely unknown. This is because the formation mechanism of DLMSN is still not clear. In this study, a series of therapeutic agent molecules were used as the auxiliary templates to study the control of the pore morphology of DLMSN. Transmission electron microscopy observation and theoretical modeling were used to study the micelle formation, and early stage silica formation was also observed. It is proposed that the silica branches and sheets formed by hydrolysis of TEOS on single micelle and micelle bundles, which formed the initial nanoparticles with spherical structures and new silica species growing on the early formed particles to form DLMSN. The fine control of pore morphology was demonstrated by using auxiliary templates with different structural characteristics, which were used for selective drug loading. This work provides a design strategy of how to choose suitable auxiliary templates for preparing DLMSN with desired pore structure for biomedical applications.

摘要

树枝状大孔介孔硅纳米粒子(DLMSN)由于其高孔隙率而成为一种重要的可生物降解药物载体,可通过在水溶液中共同组装主模板和辅助模板,然后水解四乙氧基硅烷(TEOS)来制备。辅助模板是获得树枝状大孔结构的关键;然而,如何选择辅助模板以获得所需的孔结构在很大程度上是未知的。这是因为 DLMSN 的形成机制尚不清楚。在这项研究中,一系列治疗剂分子被用作辅助模板来研究 DLMSN 孔形貌的控制。通过透射电子显微镜观察和理论建模研究了胶束的形成,并观察了早期的硅石形成。提出了 TEOS 在单个胶束和胶束束上水解形成硅石支链和薄片,这形成了具有球形结构的初始纳米颗粒,并在早期形成的颗粒上生长新的硅物种,从而形成 DLMSN。通过使用具有不同结构特征的辅助模板来进行精细控制孔形貌,实现了对选择性药物负载的控制。这项工作为如何选择合适的辅助模板用于制备具有所需孔结构的用于生物医学应用的 DLMSN 提供了一种设计策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验