Suppr超能文献

LRRpredictor-一种使用集成分类器的植物 NLR 蛋白不规则基序新 LRR 基序检测方法。

LRRpredictor-A New LRR Motif Detection Method for Irregular Motifs of Plant NLR Proteins Using an Ensemble of Classifiers.

机构信息

Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania.

Laboratory of Nematology, Wageningen University and Research, 6700ES Wageningen, The Netherlands.

出版信息

Genes (Basel). 2020 Mar 8;11(3):286. doi: 10.3390/genes11030286.

Abstract

Leucine-rich-repeats (LRRs) belong to an archaic procaryal protein architecture that is widely involved in protein-protein interactions. In eukaryotes, LRR domains developed into key recognition modules in many innate immune receptor classes. Due to the high sequence variability imposed by recognition specificity, precise repeat delineation is often difficult especially in plant NOD-like Receptors (NLRs) notorious for showing far larger irregularities. To address this problem, we introduce here LRRpredictor, a method based on an ensemble of estimators designed to better identify LRR motifs in general but particularly adapted for handling more irregular LRR environments, thus allowing to compensate for the scarcity of structural data on NLR proteins. The extrapolation capacity tested on a set of annotated LRR domains from six immune receptor classes shows the ability of LRRpredictor to recover all previously defined specific motif consensuses and to extend the LRR motif coverage over annotated LRR domains. This analysis confirms the increased variability of LRR motifs in plant and vertebrate NLRs when compared to extracellular receptors, consistent with previous studies. Hence, LRRpredictor is able to provide novel insights into the diversification of LRR domains and a robust support for structure-informed analyses of LRRs in immune receptor functioning.

摘要

富含亮氨酸重复序列(LRR)属于一种古老的原核蛋白结构,广泛参与蛋白质-蛋白质相互作用。在真核生物中,LRR 结构域在许多先天免疫受体类别中发展成为关键识别模块。由于识别特异性所带来的高序列变异性,精确的重复界定通常很困难,特别是在植物类 NOD 样受体(NLR)中,其不规则性更为明显。为了解决这个问题,我们在这里引入了 LRRpredictor,这是一种基于估计器集的方法,旨在更好地识别一般的 LRR 基序,但特别适用于处理更不规则的 LRR 环境,从而可以弥补 NLR 蛋白结构数据的稀缺性。在一组来自六个免疫受体类别的注释 LRR 结构域上进行的外推能力测试表明,LRRpredictor 能够恢复所有先前定义的特定基序共识,并扩展注释 LRR 结构域上的 LRR 基序覆盖范围。该分析证实了与先前的研究一致,与细胞外受体相比,植物和脊椎动物 NLR 中的 LRR 基序的变异性增加。因此,LRRpredictor 能够为 LRR 结构域的多样化提供新的见解,并为免疫受体功能中基于结构的 LRR 分析提供稳健的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c13c/7140858/5f7a327f7454/genes-11-00286-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验