Suppr超能文献

新型 QSAR 方法 DeepSnap-Deep Learning 预测芳香烃受体激活

Prediction Model of Aryl Hydrocarbon Receptor Activation by a Novel QSAR Approach, DeepSnap-Deep Learning.

机构信息

Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan.

Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.

出版信息

Molecules. 2020 Mar 13;25(6):1317. doi: 10.3390/molecules25061317.

Abstract

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that senses environmental exogenous and endogenous ligands or xenobiotic chemicals. In particular, exposure of the liver to environmental metabolism-disrupting chemicals contributes to the development and propagation of steatosis and hepatotoxicity. However, the mechanisms for AhR-induced hepatotoxicity and tumor propagation in the liver remain to be revealed, due to the wide variety of AhR ligands. Recently, quantitative structure-activity relationship (QSAR) analysis using deep neural network (DNN) has shown superior performance for the prediction of chemical compounds. Therefore, this study proposes a novel QSAR analysis using deep learning (DL), called the DeepSnap-DL method, to construct prediction models of chemical activation of AhR. Compared with conventional machine learning (ML) techniques, such as the random forest, XGBoost, LightGBM, and CatBoost, the proposed method achieves high-performance prediction of AhR activation. Thus, the DeepSnap-DL method may be considered a useful tool for achieving high-throughput in silico evaluation of AhR-induced hepatotoxicity.

摘要

芳香烃受体 (AhR) 是一种配体依赖性转录因子,可感知环境外源和内源配体或外源性化学物质。特别是,肝脏暴露于环境代谢干扰化学物质会导致脂肪变性和肝毒性的发展和传播。然而,由于 AhR 配体的多样性,AhR 诱导的肝毒性和肿瘤传播的机制仍有待揭示。最近,使用深度神经网络 (DNN) 的定量构效关系 (QSAR) 分析已显示出在预测化学物质方面的卓越性能。因此,本研究提出了一种使用深度学习 (DL) 的新型 QSAR 分析,称为 DeepSnap-DL 方法,用于构建 AhR 化学激活的预测模型。与传统的机器学习 (ML) 技术(如随机森林、XGBoost、LightGBM 和 CatBoost)相比,所提出的方法实现了 AhR 激活的高性能预测。因此,DeepSnap-DL 方法可以被认为是实现高通量计算机评估 AhR 诱导肝毒性的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验