Suppr超能文献

DeepSnap——深度学习方法可高效预测孕激素受体拮抗剂活性。

DeepSnap-Deep Learning Approach Predicts Progesterone Receptor Antagonist Activity With High Performance.

作者信息

Matsuzaka Yasunari, Uesawa Yoshihiro

机构信息

Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan.

出版信息

Front Bioeng Biotechnol. 2020 Jan 22;7:485. doi: 10.3389/fbioe.2019.00485. eCollection 2019.

Abstract

The progesterone receptor (PR) is important therapeutic target for many malignancies and endocrine disorders due to its role in controlling ovulation and pregnancy via the reproductive cycle. Therefore, the modulation of PR activity using its agonists and antagonists is receiving increasing interest as novel treatment strategy. However, clinical trials using the PR modulators have not yet been found conclusive evidences. Recently, increasing evidence from several fields shows that the classification of chemical compounds, including agonists and antagonists, can be done with recent improvements in deep learning (DL) using deep neural network. Therefore, we recently proposed a novel DL-based quantitative structure-activity relationship (QSAR) strategy using transfer learning to build prediction models for agonists and antagonists. By employing this novel approach, referred as DeepSnap-DL method, which uses images captured from 3-dimension (3D) chemical structure with multiple angles as input data into the DL classification, we constructed prediction models of the PR antagonists in this study. Here, the DeepSnap-DL method showed a high performance prediction of the PR antagonists by optimization of some parameters and image adjustment from 3D-structures. Furthermore, comparison of the prediction models from this approach with conventional machine learnings (MLs) indicated the DeepSnap-DL method outperformed these MLs. Therefore, the models predicted by DeepSnap-DL would be powerful tool for not only QSAR field in predicting physiological and agonist/antagonist activities, toxicity, and molecular bindings; but also for identifying biological or pathological phenomena.

摘要

孕激素受体(PR)因其在生殖周期中控制排卵和妊娠的作用,成为许多恶性肿瘤和内分泌疾病的重要治疗靶点。因此,利用其激动剂和拮抗剂调节PR活性作为一种新的治疗策略正受到越来越多的关注。然而,使用PR调节剂的临床试验尚未找到确凿证据。最近,多个领域越来越多的证据表明,包括激动剂和拮抗剂在内的化合物分类可以通过深度学习(DL)利用深度神经网络的最新进展来完成。因此,我们最近提出了一种基于深度学习的新型定量构效关系(QSAR)策略,利用迁移学习为激动剂和拮抗剂建立预测模型。通过采用这种称为DeepSnap-DL方法的新方法,该方法将从三维(3D)化学结构多角度捕获的图像作为输入数据输入到DL分类中,我们在本研究中构建了PR拮抗剂的预测模型。在此,DeepSnap-DL方法通过优化一些参数和对3D结构进行图像调整,对PR拮抗剂表现出高性能的预测。此外,将该方法的预测模型与传统机器学习(ML)进行比较表明,DeepSnap-DL方法优于这些ML。因此,由DeepSnap-DL预测的模型不仅将成为QSAR领域预测生理和激动剂/拮抗剂活性、毒性和分子结合的有力工具;而且还将用于识别生物学或病理学现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ef6/6987043/0f8dc68d7561/fbioe-07-00485-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验