Suppr超能文献

接受挑战?类人机器人 EEG 神经反馈在运动想象练习中的个体绩效提升。

Challenge Accepted? Individual Performance Gains for Motor Imagery Practice with Humanoid Robotic EEG Neurofeedback.

机构信息

Neurocognition and Functional Neurorehabilitation Group, Neuropsychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany.

. Institute for Assistive Technologies, Jade University of Applied Science, 26389 Oldenburg, Germany.

出版信息

Sensors (Basel). 2020 Mar 14;20(6):1620. doi: 10.3390/s20061620.

Abstract

Optimizing neurofeedback (NF) and brain-computer interface (BCI) implementations constitutes a challenge across many fields and has so far been addressed by, among others, advancing signal processing methods or predicting the user's control ability from neurophysiological or psychological measures. In comparison, how context factors influence NF/BCI performance is largely unexplored. We here investigate whether a competitive multi-user condition leads to better NF/BCI performance than a single-user condition. We implemented a foot motor imagery (MI) NF with mobile electroencephalography (EEG). Twenty-five healthy, young participants steered a humanoid robot in a single-user condition and in a competitive multi-user race condition using a second humanoid robot and a pseudo competitor. NF was based on 8-30 Hz relative event-related desynchronization (ERD) over sensorimotor areas. There was no significant difference between the ERD during the competitive multi-user condition and the single-user condition but considerable inter-individual differences regarding which condition yielded a stronger ERD. Notably, the stronger condition could be predicted from the participants' MI-induced ERD obtained before the NF blocks. Our findings may contribute to enhance the performance of NF/BCI implementations and highlight the necessity of individualizing context factors.

摘要

优化神经反馈 (NF) 和脑机接口 (BCI) 的实施在许多领域都是一项挑战,迄今为止,人们已经通过改进信号处理方法或从神经生理或心理测量中预测用户的控制能力来解决这个问题。相比之下,上下文因素如何影响 NF/BCI 的性能在很大程度上还没有得到探索。我们在这里研究竞争的多用户条件是否比单用户条件更能提高 NF/BCI 的性能。我们使用移动脑电图 (EEG) 实现了脚部运动想象 (MI) NF。二十五名健康的年轻参与者在单用户条件下和竞争的多用户竞赛条件下使用第二个人形机器人和一个伪竞争者来操纵人形机器人。NF 是基于感觉运动区域的 8-30 Hz 相对事件相关去同步 (ERD)。在竞争的多用户条件和单用户条件下,ERD 没有显著差异,但关于哪种条件产生更强的 ERD 存在相当大的个体差异。值得注意的是,从参与者在 NF 块之前获得的 MI 诱导的 ERD 可以预测更强的条件。我们的发现可能有助于提高 NF/BCI 的性能,并强调了个性化上下文因素的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/218a/7146190/61408b779da5/sensors-20-01620-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验