Suppr超能文献

基于脑电的运动想象脑-机接口:技术与挑战。

EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges.

机构信息

Centre for Signal and Image Processing, University of Strathclyde, Glasgow G1 1XW, UK.

School of Computer Sciences, Guangdong Polytechnic Normal University, Guangzhou 510665, China.

出版信息

Sensors (Basel). 2019 Mar 22;19(6):1423. doi: 10.3390/s19061423.

Abstract

Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs.

摘要

基于脑电图(EEG)的脑机接口(BCI),特别是那些使用运动想象(MI)数据的接口,有潜力成为临床和娱乐领域的突破性技术。当主体想象肢体运动时,就会产生 MI 数据。本文回顾了基于 MI 的 EEG-BCI 的最新信号处理技术,特别关注了所使用的特征提取、特征选择和分类技术。它还总结了基于 EEG 的 BCI 的主要应用,特别是基于 MI 数据的应用,最后详细讨论了阻碍 EEG 基 BCI 发展和商业化的最普遍挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验