Liao Pin-Chao, Higuchi-Sanabria Ryo, Swayne Theresa C, Sing Cierra N, Pon Liza A
Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.
Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Institute of Human Nutrition, Columbia University, New York, NY, United States.
Methods Cell Biol. 2020;155:519-544. doi: 10.1016/bs.mcb.2019.11.011. Epub 2019 Dec 12.
Mitochondria are highly dynamic organelles that undergo directed movement and anchorage, which in turn are critical for calcium buffering and energy mobilization at specific regions within cells or at sites of contact with other organelles. Physical and functional interactions between mitochondria and other organelles also impact processes, including phospholipid biogenesis and calcium homeostasis. Indeed, mitochondrial motility, localization, and interaction with other organelles are compromised in many neurodegenerative diseases. Here, we describe methods to visualize and carry out quantitative analysis of mitochondrial movement in two genetically-manipulatable, widely-used model systems: Drosophila neurons and the budding yeast, Saccharomyces cerevisiae. We also describe approaches for multi-color imaging in living yeast cells that may be used to visualize colocalization of proteins within mitochondria, as well as interactions of mitochondria with other organelles.
线粒体是高度动态的细胞器,会经历定向移动和锚定,这反过来对于细胞内特定区域或与其他细胞器接触位点的钙缓冲和能量动员至关重要。线粒体与其他细胞器之间的物理和功能相互作用也会影响包括磷脂生物合成和钙稳态在内的过程。事实上,在许多神经退行性疾病中,线粒体的运动性、定位以及与其他细胞器的相互作用都会受到损害。在这里,我们描述了在两种可进行基因操作且广泛使用的模型系统中可视化并对线粒体运动进行定量分析的方法:果蝇神经元和出芽酵母酿酒酵母。我们还描述了在活酵母细胞中进行多色成像的方法,这些方法可用于可视化线粒体内蛋白质的共定位以及线粒体与其他细胞器的相互作用。