Simon V R, Swayne T C, Pon L A
Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York 10032, USA.
J Cell Biol. 1995 Jul;130(2):345-54. doi: 10.1083/jcb.130.2.345.
Using fluorescent membrane potential sensing dyes to stain budding yeast, mitochondria are resolved as tubular organelles aligned in radial arrays that converge at the bud neck. Time-lapse fluorescence microscopy reveals region-specific, directed mitochondrial movement during polarized yeast cell growth and mitotic cell division. Mitochondria in the central region of the mother cell move linearly towards the bud, traverse the bud neck, and progress towards the bud tip at an average velocity of 49 +/- 21 nm/sec. In contrast, mitochondria in the peripheral region of the mother cell and at the bud tip display significantly less movement. Yeast strains containing temperature sensitive lethal mutations in the actin gene show abnormal mitochondrial distribution. No mitochondrial movement is evident in these mutants after short-term shift to semi-permissive temperatures. Thus, the actin cytoskeleton is important for normal mitochondrial movement during inheritance. To determine the possible role of known myosin genes in yeast mitochondrial motility, we investigated mitochondrial inheritance in myo1, myo2, myo3 and myo4 single mutants and in a myo2, myo4 double mutant. Mitochondrial spatial arrangement and motility are not significantly affected by these mutations. We used a microfilament sliding assay to examine motor activity on isolated yeast mitochondria. Rhodamine-phalloidin labeled yeast actin filaments bind to immobilized yeast mitochondria, as well as unilamellar, right-side-out, sealed mitochondrial outer membrane vesicles. In the presence of low levels of ATP (0.1-100 microM), we observed F-actin sliding on immobilized yeast mitochondria. In the presence of high levels of ATP (500 microM-2 mM), bound filaments are released from mitochondria and mitochondrial outer membranes. The maximum velocity of mitochondria-driven microfilament sliding (23 +/- 11 nm/sec) is similar to that of mitochondrial movement in living cells. This motor activity requires hydrolysis of ATP, does not require cytosolic extracts, is sensitive to protease treatment, and displays an ATP concentration dependence similar to that of members of the myosin family of actin-based motors. This is the first demonstration of an actin-based motor activity in a defined organelle population.
利用荧光膜电位传感染料对出芽酵母进行染色,线粒体可被分辨为呈放射状排列的管状细胞器,这些放射状排列在芽颈处汇聚。延时荧光显微镜显示,在极化的酵母细胞生长和有丝分裂过程中,线粒体存在区域特异性的定向运动。母细胞中央区域的线粒体呈线性向芽移动,穿过芽颈,并以平均49±21纳米/秒的速度向芽尖推进。相比之下,母细胞周边区域以及芽尖处的线粒体移动明显较少。在肌动蛋白基因中含有温度敏感致死突变的酵母菌株表现出线粒体分布异常。在短期转移至半允许温度后,这些突变体中未观察到线粒体移动。因此,肌动蛋白细胞骨架对于遗传过程中正常的线粒体移动很重要。为了确定酵母中已知肌球蛋白基因在线粒体运动性中可能发挥的作用,我们研究了肌球蛋白1、肌球蛋白2、肌球蛋白3和肌球蛋白4单突变体以及肌球蛋白2、肌球蛋白4双突变体中的线粒体遗传情况。这些突变对线粒体的空间排列和运动性没有显著影响。我们使用微丝滑动试验来检测分离的酵母线粒体上的马达活性。罗丹明 - 鬼笔笔环肽标记的酵母肌动蛋白丝可与固定的酵母线粒体以及单层、外翻、密封的线粒体外膜囊泡结合。在低水平ATP(0.1 - 100微摩尔)存在的情况下,我们观察到F - 肌动蛋白在固定的酵母线粒体上滑动。在高水平ATP(500微摩尔 - 2毫摩尔)存在的情况下,结合的丝从线粒体和线粒体外膜上释放。线粒体驱动的微丝滑动的最大速度(23±11纳米/秒)与活细胞中线粒体的移动速度相似。这种马达活性需要ATP水解,但不需要胞质提取物,对蛋白酶处理敏感,并且显示出与基于肌动蛋白的肌球蛋白家族成员相似的ATP浓度依赖性。这是在特定细胞器群体中首次证明基于肌动蛋白的马达活性。