Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
mBio. 2020 Mar 17;11(2):e00226-20. doi: 10.1128/mBio.00226-20.
The posttranslational Ca-dependent "clip-and-link" activity of large epeat-in-oin (RTX) proteins starts by Ca-dependent structural rearrangement of a highly conserved self-processing module (SPM). Subsequently, an internal aspartate-proline (Asp-Pro) peptide bond at the N-terminal end of SPM breaks, and the liberated C-terminal aspartyl residue can react with a free ε-amino group of an adjacent lysine residue to form a new isopeptide bond. Here, we report a solution structure of the calcium-loaded SPM (Ca-SPM) derived from the FrpC protein of The Ca-SPM structure defines a unique protein architecture and provides structural insight into the autocatalytic cleavage of the Asp-Pro peptide bond through a "twisted-amide" activation. Furthermore, in-frame deletion of the SPM domain from the ApxIVA protein of attenuated the virulence of this porcine pathogen in a pig respiratory challenge model. We hypothesize that the Ca-dependent clip-and-link activity represents an unconventional strategy for Gram-negative pathogens to adhere to the host target cell surface. The Ca-dependent clip-and-link activity of large repeat-in-toxin (RTX) proteins is an exceptional posttranslational process in which an internal domain called a self-processing module (SPM) mediates Ca-dependent processing of a highly specific aspartate-proline (Asp-Pro) peptide bond and covalent linkage of the released aspartyl to an adjacent lysine residue through an isopeptide bond. Here, we report the solution structures of the Ca-loaded SPM (Ca-SPM) defining the mechanism of the autocatalytic cleavage of the Asp414-Pro415 peptide bond of the FrpC exoprotein. Moreover, deletion of the SPM domain in the ApxIVA protein, the FrpC homolog of , resulted in attenuation of virulence of the bacterium in a pig infection model, indicating that the Ca-dependent clip-and-link activity plays a role in the virulence of Gram-negative pathogens.
RTX 蛋白的翻译后 Ca 依赖性“夹-连”活性始于高度保守的自我加工模块(SPM)的 Ca 依赖性结构重排。随后,SPM 氨基末端的内部天冬氨酸-脯氨酸(Asp-Pro)肽键断裂,释放的 C 末端天冬氨酸残基可与相邻赖氨酸残基的游离 ε-氨基反应形成新的异肽键。在这里,我们报告了 FrpC 蛋白来源的 Ca 负载 SPM(Ca-SPM)的溶液结构。Ca-SPM 结构定义了一种独特的蛋白质结构,并通过“扭曲酰胺”激活提供了对 Asp-Pro 肽键自动切割的结构见解。此外,从 ApxIVA 蛋白中框内缺失 SPM 结构域,减弱了该猪病原体在猪呼吸道挑战模型中的毒力。我们假设 Ca 依赖性夹-连活性代表革兰氏阴性病原体附着于宿主靶细胞表面的一种非传统策略。
翻译后 Ca 依赖性重复毒素(RTX)蛋白的夹连活性是一种特殊的翻译后过程,其中一个内部结构域称为自我加工模块(SPM)介导 Ca 依赖性加工高度特异性的天冬氨酸-脯氨酸(Asp-Pro)肽键,并通过异肽键将释放的天冬氨酸与相邻的赖氨酸残基共价连接。在这里,我们报告了 Ca 负载 SPM(Ca-SPM)的溶液结构,定义了 FrpC 外蛋白中 Asp414-Pro415 肽键自动切割的机制。此外,在 ApxIVA 蛋白(FrpC 的同源物)中缺失 SPM 结构域,导致细菌在猪感染模型中的毒力减弱,表明 Ca 依赖性夹连活性在革兰氏阴性病原体的毒力中起作用。