Suppr超能文献

基于 EZSCAN 自主测试和人体测量数据的公式,用于诊断中国的糖尿病。

A formula based on autonomic test using EZSCAN and anthropometric data for diagnosis of DM in China.

机构信息

Center of Health Examination, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.

Department of Mathematics, Universidad de los Andes Colombia, Bogota, Colombia.

出版信息

Sci Rep. 2020 Mar 17;10(1):4870. doi: 10.1038/s41598-020-61841-2.

Abstract

Clinical diagnosis of diabetes mellitus (DM) is time-consuming and invasive. This study aimed to investigate the efficacy and accuracy of EZSCAN in detecting impaired glucose tolerance (IGT) and diabetes mellitus (DM) in Chinese population, and explore a diagnosis formula based on an autonomic test using EZSCAN measurement and anthropometric data. Eligible subjects (n = 1547) had the following data collected: those of anthropometric and EZSCAN measurements and biochemical tests including FPG, OGTT, HbA1c, and serum lipid tests. The support vector machine (SVM) algorithm method was used to derive a diagnostic formula. In this study, 452 and 263 subjects were diagnosed with T2DM and IGT, respectively, while 832 had normal glucose tolerance (NGT). The sensitivity rates for the formula were 77.2% for T2DM and 80.4% for IGT. The diagnostic formula was found to correlate strongly with EZSCAN values. The diagnostic formula based on autonomic test and anthropometric data appears to be a convenient and accurate routine screening option in the Chinese population.

摘要

临床诊断糖尿病(DM)既耗时又具侵入性。本研究旨在探讨 EZSCAN 在检测中国人糖耐量受损(IGT)和糖尿病(DM)中的疗效和准确性,并探索一种基于使用 EZSCAN 测量和人体测量数据的自主测试的诊断公式。合格的受试者(n=1547)收集了以下数据:人体测量和 EZSCAN 测量以及生化测试的结果,包括 FPG、OGTT、HbA1c 和血清脂质测试。支持向量机(SVM)算法方法用于推导出诊断公式。在这项研究中,分别有 452 名和 263 名受试者被诊断为 T2DM 和 IGT,而 832 名受试者具有正常糖耐量(NGT)。该公式的灵敏度率分别为 77.2%和 80.4%用于 T2DM 和 IGT。发现诊断公式与 EZSCAN 值密切相关。基于自主测试和人体测量数据的诊断公式似乎是中国人群中一种方便且准确的常规筛查选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72fd/7078247/2d355889738d/41598_2020_61841_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验