文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于纳米载体的治疗学和治疗药物传递系统用于下一代肝癌纳米药物模式。

Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities.

机构信息

Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.

Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience Universiti, Putra 43400, Malaysia.

出版信息

Int J Nanomedicine. 2020 Mar 3;15:1437-1456. doi: 10.2147/IJN.S236927. eCollection 2020.


DOI:10.2147/IJN.S236927
PMID:32184597
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7060777/
Abstract

The development of therapeutics and theranostic nanodrug delivery systems have posed a challenging task for the current researchers due to the requirement of having various nanocarriers and active agents for better therapy, imaging, and controlled release of drugs efficiently in one platform. The conventional liver cancer chemotherapy has many negative effects such as multiple drug resistance (MDR), high clearance rate, severe side effects, unwanted drug distribution to the specific site of liver cancer and low concentration of drug that finally reaches liver cancer cells. Therefore, it is necessary to develop novel strategies and novel nanocarriers that will carry the drug molecules specific to the affected cancerous hepatocytes in an adequate amount and duration within the therapeutic window. Therapeutics and theranostic systems have advantages over conventional chemotherapy due to the high efficacy of drug loading or drug encapsulation efficiency, high cellular uptake, high drug release, and minimum side effects. These nanocarriers possess high drug accumulation in the tumor area while minimizing toxic effects on healthy tissues. This review focuses on the current research on nanocarrier-based therapeutics and theranostic drug delivery systems excluding the negative consequences of nanotechnology in the field of drug delivery systems. However, clinical developments of theranostics nanocarriers for liver cancer are considered outside of the scope of this article. This review discusses only the recent developments of nanocarrier-based drug delivery systems for liver cancer therapy and diagnosis. The negative consequences of individual nanocarrier in the drug delivery system will also not be covered in this review.

摘要

治疗学和治疗诊断学纳米药物递送系统的发展对当前的研究人员提出了一项具有挑战性的任务,因为需要各种纳米载体和活性药物,以便在一个平台上更有效地进行治疗、成像和药物的控制释放。传统的肝癌化疗有许多负面影响,如多药耐药性(MDR)、高清除率、严重的副作用、药物在肝癌的特定部位分布不当以及最终到达肝癌细胞的药物浓度低。因此,有必要开发新的策略和新型纳米载体,以便在治疗窗内以足够的数量和持续时间将药物分子特异性地递送到受影响的肝癌细胞中。治疗学和治疗诊断系统具有优于传统化疗的优势,因为其载药或药物包封效率高、细胞摄取率高、药物释放率高、副作用最小。这些纳米载体在肿瘤区域具有高药物蓄积,同时最大限度地减少对健康组织的毒性作用。本综述重点介绍了当前基于纳米载体的治疗学和治疗诊断药物递送系统的研究,不包括纳米技术在药物递送系统领域的负面影响。然而,治疗学纳米载体在肝癌中的临床发展被认为超出了本文的范围。本文仅讨论了基于纳米载体的药物递送系统在肝癌治疗和诊断方面的最新进展。本综述也不会涵盖药物递送系统中个别纳米载体的负面影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/0dba51bb75ec/IJN-15-1437-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/f947698d5490/IJN-15-1437-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/8ab65998a579/IJN-15-1437-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/76ba121f6c42/IJN-15-1437-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/fbc781d26f9e/IJN-15-1437-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/dcd814c6c45b/IJN-15-1437-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/214c698a829d/IJN-15-1437-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/261f8a1536c7/IJN-15-1437-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/ad66da8513d2/IJN-15-1437-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/0dba51bb75ec/IJN-15-1437-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/f947698d5490/IJN-15-1437-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/8ab65998a579/IJN-15-1437-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/76ba121f6c42/IJN-15-1437-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/fbc781d26f9e/IJN-15-1437-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/dcd814c6c45b/IJN-15-1437-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/214c698a829d/IJN-15-1437-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/261f8a1536c7/IJN-15-1437-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/ad66da8513d2/IJN-15-1437-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6550/7060777/0dba51bb75ec/IJN-15-1437-g0009.jpg

相似文献

[1]
Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities.

Int J Nanomedicine. 2020-3-3

[2]
Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics.

Biomater Sci. 2019-8-15

[3]
Advances in Functionalized Mesoporous Silica Nanoparticles for Tumor Targeted Drug Delivery and Theranostics.

Curr Pharm Des. 2017

[4]
Smart Drug Delivery Systems in Cancer Therapy.

Curr Drug Targets. 2018-2-8

[5]
Nanocarrier-based Drug Delivery System for Cancer Therapeutics: A Review of the Last Decade.

Curr Med Chem. 2021

[6]
Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics.

Drug Discov Today. 2018-2-6

[7]
Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead.

Biochim Biophys Acta Gen Subj. 2021-2

[8]
Ligand-based active targeting strategies for cancer theranostics.

Naunyn Schmiedebergs Arch Pharmacol. 2023-12

[9]
Needle-shaped amphoteric calix[4]arene as a magnetic nanocarrier for simultaneous delivery of anticancer drugs to the breast cancer cells.

Int J Nanomedicine. 2019-4-15

[10]
Nanocarrier-based drug combination therapy for glioblastoma.

Theranostics. 2020

引用本文的文献

[1]
A pH/MMP-9 smart dual-responsive liposome GBE@LP co-delivers and controls the release of GB1107/BMS1166/Enzalutamide for liver cancer immunotherapy.

Mater Today Bio. 2025-5-8

[2]
Advancements in Nanocarrier Delivery Systems for Photodynamic Therapy in Lung Cancer.

Int J Nanomedicine. 2025-5-29

[3]
Biosensing and Biotechnological Applications of Nanofillers: Current Status and Perspectives.

Indian J Microbiol. 2025-3

[4]
Drug Delivery System for Cancer Immunotherapy: Potential Roles, Challenge and Recent Advances.

Technol Cancer Res Treat. 2025

[5]
Transformative Impact of Nanocarrier-Mediated Drug Delivery: Overcoming Biological Barriers and Expanding Therapeutic Horizons.

Small Sci. 2024-9-17

[6]
Knowledge structure and dynamic evolution of nanomedicine in liver cancer research: a scientometric analysis and visualization.

Front Pharmacol. 2025-2-26

[7]
The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review).

Sovrem Tekhnologii Med. 2023

[8]
Glycyrrhizinate Monoammonium Cysteine-Loaded Lipid Nanoparticles Allow for Improved Acute Liver Injury Therapy.

Pharmaceutics. 2025-1-12

[9]
Nanocarriers for Delivery of Anticancer Drugs: Current Developments, Challenges, and Perspectives.

Pharmaceutics. 2024-11-27

[10]
Preliminary Study on Pharmacokinetics and Antitumor Pharmacodynamics of Folic Acid Modified Crebanine Polyethyleneglycol-Polylactic Acid Hydroxyacetic Acid Copolymer Nanoparticles.

Int J Nanomedicine. 2024

本文引用的文献

[1]
Nanoparticles as contrast agents for brain nuclear magnetic resonance imaging in Alzheimer's disease diagnosis.

J Mater Chem B. 2017-9-21

[2]
Highly luminescent, heteroatom-doped carbon quantum dots for ultrasensitive sensing of glucosamine and targeted imaging of liver cancer cells.

J Mater Chem B. 2017-3-21

[3]
Lipid micelles packaged with semiconducting polymer dots as simultaneous MRI/photoacoustic imaging and photodynamic/photothermal dual-modal therapeutic agents for liver cancer.

J Mater Chem B. 2016-1-28

[4]
Diagnostic imaging and therapeutic application of nanoparticles targeting the liver.

J Mater Chem B. 2015-2-14

[5]
Reduction breakable cholesteryl pullulan nanoparticles for targeted hepatocellular carcinoma chemotherapy.

J Mater Chem B. 2014-6-14

[6]
Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin-loaded electrospun polylactide nanofibers.

J Mater Chem B. 2013-1-7

[7]
Sorafenib and indocyanine green co-loaded in photothermally sensitive liposomes for diagnosis and treatment of advanced hepatocellular carcinoma.

J Mater Chem B. 2018-9-28

[8]
Design And Characterisation Of Novel Sorafenib-Loaded Carbon Nanotubes With Distinct Tumour-Suppressive Activity In Hepatocellular Carcinoma.

Int J Nanomedicine. 2019-10-29

[9]
Therapeutic Effect of Sorafenib-Loaded TPGS--PCL Nanoparticles on Liver Cancer.

J Biomed Nanotechnol. 2018-2-1

[10]
Enhanced Potency of GalNAc-Conjugated Antisense Oligonucleotides in Hepatocellular Cancer Models.

Mol Ther. 2019-6-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索