Department of Microbiology, University of Bayreuth, Universitätsstraße 30, Bayreuth, D-95447, Germany.
Small. 2020 Apr;16(16):e1906922. doi: 10.1002/smll.201906922. Epub 2020 Mar 18.
Their unique material characteristics, i.e. high crystallinity, strong magnetization, uniform shape and size, and the ability to engineer the enveloping membrane in vivo make bacterial magnetosomes highly interesting for many biomedical and biotechnological applications. In this study, a versatile toolkit is developed for the multifunctionalization of magnetic nanoparticles in the magnetotactic bacterium Magnetospirillum gryphiswaldense, and the use of several abundant magnetosome membrane proteins as anchors for functional moieties is explored. High-level magnetosome display of cargo proteins enables the generation of engineered nanoparticles with several genetically encoded functionalities, including a core-shell structure, magnetization, two different catalytic activities, fluorescence and the presence of a versatile connector that allows the incorporation into a hydrogel-based matrix by specific coupling reactions. The resulting reusable magnetic composite demonstrates the high potential of synthetic biology for the production of multifunctional nanomaterials, turning the magnetosome surface into a platform for specific versatile display of functional moieties.
它们独特的材料特性,即高结晶度、强磁化率、均匀的形状和尺寸,以及在体内设计包膜的能力,使得细菌磁小体在许多生物医学和生物技术应用中具有很高的兴趣。在这项研究中,开发了一种多功能化工具包,用于磁趋化螺旋菌(Magnetospirillum gryphiswaldense)中磁性纳米颗粒的多功能化,探索了几种丰富的磁小体膜蛋白作为功能部分的锚定点。货物蛋白的高水平磁小体展示使具有多种遗传编码功能的工程纳米颗粒的生成成为可能,包括核壳结构、磁化、两种不同的催化活性、荧光以及存在一种通用连接器,允许通过特定的偶联反应掺入水凝胶基质中。由此产生的可重复使用的磁性复合材料证明了合成生物学在生产多功能纳米材料方面的巨大潜力,使磁小体表面成为特定多功能显示功能部分的平台。