Suppr超能文献

趋磁细菌中生物合成相关基因簇的基因组扩增导致磁小体过度产生。

Overproduction of Magnetosomes by Genomic Amplification of Biosynthesis-Related Gene Clusters in a Magnetotactic Bacterium.

作者信息

Lohße Anna, Kolinko Isabel, Raschdorf Oliver, Uebe René, Borg Sarah, Brachmann Andreas, Plitzko Jürgen M, Müller Rolf, Zhang Youming, Schüler Dirk

机构信息

Ludwig-Maximilians-Universität München, Department of Biology I, Martinsried, Germany.

Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Martinsried, Germany.

出版信息

Appl Environ Microbiol. 2016 May 2;82(10):3032-3041. doi: 10.1128/AEM.03860-15. Print 2016 May 15.

Abstract

UNLABELLED

Magnetotactic bacteria biosynthesize specific organelles, the magnetosomes, which are membrane-enclosed crystals of a magnetic iron mineral that are aligned in a linear chain. The number and size of magnetosome particles have to be critically controlled to build a sensor sufficiently strong to ensure the efficient alignment of cells within Earth's weak magnetic field while at the same time minimizing the metabolic costs imposed by excessive magnetosome biosynthesis. Apart from their biological function, bacterial magnetosomes have gained considerable interest since they provide a highly useful model for prokaryotic organelle formation and represent biogenic magnetic nanoparticles with exceptional properties. However, potential applications have been hampered by the difficult cultivation of these fastidious bacteria and their poor yields of magnetosomes. In this study, we found that the size and number of magnetosomes within the cell are controlled by many different Mam and Mms proteins. We present a strategy for the overexpression of magnetosome biosynthesis genes in the alphaproteobacterium Magnetospirillum gryphiswaldense by chromosomal multiplication of individual and multiple magnetosome gene clusters via transposition. While stepwise amplification of the mms6 operon resulted in the formation of increasingly larger crystals (increase of ∼35%), the duplication of all major magnetosome operons (mamGFDC, mamAB, mms6, and mamXY, comprising 29 genes in total) yielded an overproducing strain in which magnetosome numbers were 2.2-fold increased. We demonstrate that the tuned expression of the mam and mms clusters provides a powerful strategy for the control of magnetosome size and number, thereby setting the stage for high-yield production of tailored magnetic nanoparticles by synthetic biology approaches.

IMPORTANCE

Before our study, it had remained unknown how the upper sizes and numbers of magnetosomes are genetically regulated, and overproduction of magnetosome biosynthesis had not been achieved, owing to the difficulties of large-scale genome engineering in the recalcitrant magnetotactic bacteria. In this study, we established and systematically explored a strategy for the overexpression of magnetosome biosynthesis genes by genomic amplification of single and multiple magnetosome gene clusters via sequential chromosomal insertion by transposition. Our findings also indicate that the expression levels of magnetosome proteins together limit the upper size and number of magnetosomes within the cell. We demonstrate that tuned overexpression of magnetosome gene clusters provides a powerful strategy for the precise control of magnetosome size and number.

摘要

未加标签

趋磁细菌生物合成特定的细胞器——磁小体,磁小体是由膜包裹的磁性铁矿物晶体,呈线性排列成链。磁小体颗粒的数量和大小必须受到严格控制,以构建一个足够强大的传感器,确保细胞在地球弱磁场中有效排列,同时将过度生物合成磁小体所带来的代谢成本降至最低。除了其生物学功能外,细菌磁小体因其为原核细胞器形成提供了一个非常有用的模型,并代表具有特殊性质的生物源磁性纳米颗粒,而引起了广泛关注。然而,这些苛求细菌的难以培养及其磁小体的低产量阻碍了其潜在应用。在本研究中,我们发现细胞内磁小体的大小和数量受许多不同的Mam和Mms蛋白控制。我们提出了一种策略,通过转座使单个和多个磁小体基因簇在染色体上倍增,从而在α-变形菌嗜磁螺菌中过表达磁小体生物合成基因。虽然逐步扩增mms6操纵子导致形成越来越大的晶体(增加约35%),但所有主要磁小体操纵子(mamGFDC、mamAB、mms6和mamXY,总共包含29个基因)的复制产生了一个高产菌株,其中磁小体数量增加了2.2倍。我们证明,mam和mms簇的调控表达为控制磁小体大小和数量提供了一个强大的策略,从而为通过合成生物学方法高产定制磁性纳米颗粒奠定了基础。

重要性

在我们的研究之前,磁小体的最大尺寸和数量如何进行基因调控尚不清楚,并且由于在顽固的趋磁细菌中进行大规模基因组工程存在困难,尚未实现磁小体生物合成的过量生产。在本研究中,我们建立并系统探索了一种策略,通过转座顺序染色体插入对单个和多个磁小体基因簇进行基因组扩增,以过表达磁小体生物合成基因。我们的研究结果还表明,磁小体蛋白的表达水平共同限制了细胞内磁小体的最大尺寸和数量。我们证明,磁小体基因簇的调控过表达为精确控制磁小体大小和数量提供了一个强大的策略。

相似文献

7
Magnetosome biogenesis in magnetotactic bacteria.磁小体生物发生在趋磁细菌中。
Nat Rev Microbiol. 2016 Sep 13;14(10):621-37. doi: 10.1038/nrmicro.2016.99.

引用本文的文献

5
Magnetosomes as Potential Nanocarriers for Cancer Treatment.磁小体作为癌症治疗的潜在纳米载体。
Curr Drug Deliv. 2024;21(8):1073-1081. doi: 10.2174/1567201820666230619155528.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验