From the Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (K.T., J.A.-J., S.T., W. Schaper).
Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, Germany (K.T., G.J., T.S.-R.).
Arterioscler Thromb Vasc Biol. 2020 May;40(5):e126-e137. doi: 10.1161/ATVBAHA.120.313316. Epub 2020 Mar 19.
Arteriogenesis, describing the process of collateral artery growth, is activated by fluid shear stress (FSS). Since this vascular mechanotransduction may involve microRNAs (miRNAs), we investigated the FSS-induced expression of vascular cell miRNAs and their functional impact on collateral artery growth during arteriogenesis. Approach and Results: To this end, rats underwent femoral artery ligation and arteriovenous anastomosis to increase collateral blood flow to maximize FSS and trigger collateral vessel remodeling. Five days after surgery, a miRNA expression profile was obtained from collateral tissue, and upregulation of 4 miRNAs (miR-24-3p, miR-143-3p, miR-146a-5p, and miR-195-5p) was verified by quantitative polymerase chain reaction. Knockdown of miRNAs at the same time of the surgery in an in vivo mouse ligation and recovery model demonstrated that inhibition of miR-143-3p only severely impaired blood flow recovery due to decreased arteriogenesis. In situ hybridization revealed distinct localization of miR-143-3p in the vessel wall of growing collateral arteries predominantly in smooth muscle cells. To investigate the mechanotransduction of FSS leading to the increased miR-143-3p expression, cultured endothelial cells were exposed to FSS. This provoked the expression and release of TGF-β (transforming growth factor-β), which increased the expression of miR-143-3p in smooth muscle cells in the presence of SRF (serum response factor) and myocardin. COL5A2 (collagen type V-α2)-a target gene of miR-143-3p predicted by in silico analysis-was found to be downregulated in growing collaterals.
These results indicate that the increased miR-143-3p expression in response to FSS might contribute to the reorganization of the extracellular matrix, which is important for vascular remodeling processes, by inhibiting collagen V-α2 biosynthesis.
描述侧支动脉生长过程的动脉生成,受流体力(FSS)激活。由于这种血管机械转导可能涉及 microRNAs(miRNAs),我们研究了 FSS 诱导的血管细胞 miRNAs 的表达及其对动脉生成过程中侧支动脉生长的功能影响。
为此,大鼠进行股动脉结扎和动静脉吻合术,以增加侧支血流量,最大限度地提高 FSS 并触发侧支血管重塑。手术后 5 天,从侧支组织获得 miRNA 表达谱,并通过定量聚合酶链反应验证 4 种 miRNA(miR-24-3p、miR-143-3p、miR-146a-5p 和 miR-195-5p)的上调。在体内小鼠结扎和恢复模型中同时对 miRNA 进行敲低,结果表明 miR-143-3p 的抑制仅因动脉生成减少而严重损害血流恢复。原位杂交显示 miR-143-3p 在生长中的侧支动脉的血管壁中存在明显的定位,主要在平滑肌细胞中。为了研究导致 miR-143-3p 表达增加的 FSS 机械转导,将培养的内皮细胞暴露于 FSS 中。这引起 TGF-β(转化生长因子-β)的表达和释放,在存在 SRF(血清反应因子)和心肌蛋白的情况下,增加平滑肌细胞中 miR-143-3p 的表达。通过计算机分析预测的 COL5A2(胶原 V-α2)-miR-143-3p 的靶基因-在生长的侧支中发现下调。
这些结果表明,FSS 引起的 miR-143-3p 表达增加可能通过抑制胶原 V-α2 生物合成,有助于细胞外基质的重新组织,这对于血管重塑过程很重要。