Suppr超能文献

一种具有贝叶斯变量选择的地理标识符分配算法,用于确定与哮喘急诊就诊差异相关的邻里因素。

A geographic identifier assignment algorithm with Bayesian variable selection to identify neighborhood factors associated with emergency department visit disparities for asthma.

机构信息

Division of Epidemiology, Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.

Division of Biostatistics, Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.

出版信息

Int J Health Geogr. 2020 Mar 18;19(1):9. doi: 10.1186/s12942-020-00203-7.

Abstract

BACKGROUND

Ecologic health studies often rely on outcomes from health service utilization data that are limited by relatively coarse spatial resolutions and missing geographic information, particularly neighborhood level identifiers. When fine-scale geographic data are missing, the ramifications and strategies for addressing them are not well researched or developed. This study illustrates a novel spatio-temporal framework that combines a geographic identifier assignment (i.e., geographic imputation) algorithm with predictive Bayesian variable selection to identify neighborhood factors associated with disparities in emergency department (ED) visits for asthma.

METHODS

ED visit records with missing fine-scale spatial identifiers (~ 20%) were geocoded using information from known, coarser, misaligned spatial units using an innovative geographic identifier assignment algorithm. We then employed systematic variable selection in a spatio-temporal Bayesian hierarchical model (BHM) predictive framework within the NIMBLE package in R. Our novel methodology is illustrated in an ecologic case study aimed at identifying neighborhood-level predictors of asthma ED visits in South Carolina, United States, from 1999 to 2015. The health outcome was annual ED visit counts in small areas (i.e., census tracts) with primary diagnoses of asthma (ICD9 codes 493.XX) among children ages 5 to 19 years.

RESULTS

We maintained 96% of ED visit records for this analysis. When the algorithm used areal proportions as probabilities for assignment, which addressed differential missingness of census tract identifiers in rural areas, variable selection consistently identified significant neighborhood-level predictors of asthma ED visit risk including pharmacy proximity, average household size, and carbon monoxide interactions. Contrasted with common solutions of removing geographically incomplete records or scaling up analyses, our methodology identified critical differences in parameters estimated, predictors selected, and inferences. We posit that the differences were attributable to improved data resolution, resulting in greater power and less bias. Importantly, without this methodology, we would have inaccurately identified predictors of risk for asthma ED visits, particularly in rural areas.

CONCLUSIONS

Our approach innovatively addressed several issues in ecologic health studies, including missing small-area geographic information, multiple correlated neighborhood covariates, and multiscale unmeasured confounding factors. Our methodology could be widely applied to other small-area studies, useful to a range of researchers throughout the world.

摘要

背景

生态健康研究通常依赖于卫生服务利用数据的结果,这些数据受到相对粗糙的空间分辨率和缺失地理信息的限制,特别是缺少邻里水平的标识符。当缺少细粒度的地理数据时,解决这些问题的影响和策略还没有得到很好的研究或开发。本研究说明了一种新颖的时空框架,该框架结合了地理标识符分配(即地理推断)算法和预测贝叶斯变量选择,以确定与哮喘急诊就诊差异相关的邻里因素。

方法

使用来自已知的、较粗的、未对齐的空间单元的信息,使用创新的地理标识符分配算法对缺失细粒度空间标识符(约 20%)的急诊就诊记录进行地理编码。然后,我们在 R 中的 NIMBLE 包内的时空贝叶斯层次模型(BHM)预测框架中采用系统变量选择。我们的新方法在一个生态案例研究中得到了说明,该研究旨在确定美国南卡罗来纳州 1999 年至 2015 年间哮喘急诊就诊的邻里水平预测因素。健康结果是年龄在 5 至 19 岁之间的儿童主要诊断为哮喘(ICD9 代码 493.XX)的小区域(即普查区)的每年急诊就诊次数。

结果

我们为这项分析保留了 96%的急诊就诊记录。当使用面积比例作为分配概率的算法时,解决了农村地区普查区标识符的差异缺失问题,变量选择始终确定了哮喘急诊就诊风险的重要邻里水平预测因素,包括药店距离、平均家庭规模和一氧化碳相互作用。与删除地理上不完整记录或扩大分析的常见解决方案相比,我们的方法在估计参数、选择预测因素和推理方面存在显著差异。我们假设这些差异归因于数据分辨率的提高,从而提高了能力并减少了偏差。重要的是,如果没有这种方法,我们将不准确地确定哮喘急诊就诊风险的预测因素,特别是在农村地区。

结论

我们的方法创新性地解决了生态健康研究中的几个问题,包括缺失小区域地理信息、多个相关邻里协变量和多尺度未测量的混杂因素。我们的方法可以广泛应用于其他小区域研究,对世界各地的研究人员都很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ee8/7081565/c1fb0fc1a009/12942_2020_203_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验