Suppr超能文献

在强制免疫激活的小鼠肿瘤中,抗PD-1治疗后对癌细胞[F]FDG摄取的影响。

Influence on [F]FDG uptake by cancer cells after anti-PD-1 therapy in an enforced-immune activated mouse tumor.

作者信息

Tomita Mayu, Suzuki Motofumi, Kono Yusuke, Nakajima Kohei, Matsuda Takuma, Kuge Yuji, Ogawa Mikako

机构信息

Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.

Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, 060-0815, Japan.

出版信息

EJNMMI Res. 2020 Mar 19;10(1):24. doi: 10.1186/s13550-020-0608-4.

Abstract

BACKGROUND

Anti-programmed cell death 1 (PD-1) antibody is an immune checkpoint inhibitor, and anti-PD-1 therapy improves the anti-tumor functions of T cells and affects tumor microenvironment. We previously reported that anti-PD-1 treatment affected tumor glycolysis by using 2-deoxy-2-[F]fluoro-D-glucose ([F]FDG) positron emission tomography (PET). That study showed that anti-PD-1 therapy in a mouse B16F10 melanoma model increased glucose metabolism in cancer cells at the point where anti-PD-1 therapy did not cause a significant inhibition of tumor growth. However, the B16F10 melanoma model is poorly immunogenic, so it is not clear how anti-PD-1 treatment affects glucose metabolism in highly immunogenic cancer models. In this study, we used a cyclic dinucleotide GMP-AMP (cGAMP)-injected B16F10 melanoma model to investigate the effect of anti-PD-1 therapy on [F]FDG uptake in a highly immune activated tumor in mice.

RESULTS

To compare the cGAMP-injected B16F10 model with the B16F10 model, experiments were performed as described in our previous manuscript. [F]FDG-PET was measured before treatment and 7 days after the start of treatment. In this study, [F]FDG uptake in tumors in the cGAMP/anti-PD-1 combination group was lower than that in the anti-PD-1 treatment group tumors on day 7, as shown by PET and ex vivo validation. Flow-cytometry was performed to assess immune cell populations and glucose metabolism. Anti-PD-1 and/or cGAMP treatment increased the infiltration level of immune cells into tumors. The cGAMP/anti-PD-1 combination group had significantly lower levels of GLUT1 cells/hexokinase II cells in CD45 cancer cells compared with tumors in the anti-PD-1 treated group. These results suggested that if immune responses in tumors are higher than a certain level, glucose uptake in cancer cells is reduced depending on that level. Such a change of glucose uptake might be caused by the difference in infiltration or activation level of immune cells between the anti-PD-1 treated group and the cGAMP/anti-PD-1 combination group.

CONCLUSIONS

[F]FDG uptake in cancer cells after anti-PD-1 treatment might be affected by the tumor immune microenvironment including immune cell infiltration, composition, and activation status.

摘要

背景

抗程序性细胞死亡蛋白1(PD-1)抗体是一种免疫检查点抑制剂,抗PD-1治疗可改善T细胞的抗肿瘤功能并影响肿瘤微环境。我们之前报道过,抗PD-1治疗通过使用2-脱氧-2-[F]氟-D-葡萄糖([F]FDG)正电子发射断层扫描(PET)影响肿瘤糖酵解。该研究表明,在小鼠B16F10黑色素瘤模型中,抗PD-1治疗在未显著抑制肿瘤生长的情况下增加了癌细胞中的葡萄糖代谢。然而,B16F10黑色素瘤模型的免疫原性较差,因此尚不清楚抗PD-1治疗如何影响高免疫原性癌症模型中的葡萄糖代谢。在本研究中,我们使用环二核苷酸GMP-AMP(cGAMP)注射的B16F10黑色素瘤模型来研究抗PD-1治疗对小鼠高度免疫激活肿瘤中[F]FDG摄取的影响。

结果

为了将cGAMP注射的B16F10模型与B16F10模型进行比较,按照我们之前论文中所述进行实验。在治疗前和治疗开始后7天测量[F]FDG-PET。在本研究中,如PET和体外验证所示,在第7天,cGAMP/抗PD-1联合治疗组肿瘤中的[F]FDG摄取低于抗PD-1治疗组肿瘤中的摄取。进行流式细胞术以评估免疫细胞群体和葡萄糖代谢。抗PD-1和/或cGAMP治疗增加了免疫细胞向肿瘤中的浸润水平。与抗PD-1治疗组的肿瘤相比,cGAMP/抗PD-1联合治疗组CD45癌细胞中GLUT1细胞/己糖激酶II细胞的水平显著降低。这些结果表明,如果肿瘤中的免疫反应高于一定水平,癌细胞中的葡萄糖摄取会根据该水平而降低。这种葡萄糖摄取的变化可能是由抗PD-1治疗组和cGAMP/抗PD-1联合治疗组之间免疫细胞浸润或激活水平的差异引起的。

结论

抗PD-1治疗后癌细胞中的[F]FDG摄取可能受肿瘤免疫微环境影响,包括免疫细胞浸润、组成和激活状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30aa/7080890/4fe221ca5a4d/13550_2020_608_Fig1_HTML.jpg

相似文献

2
Anti PD-1 treatment increases [F]FDG uptake by cancer cells in a mouse B16F10 melanoma model.
EJNMMI Res. 2018 Aug 16;8(1):82. doi: 10.1186/s13550-018-0433-1.
6
Value of F-FDG-PET to predict PD-L1 expression and outcomes of PD-1 inhibition therapy in human cancers.
Cancer Imaging. 2021 Jan 13;21(1):11. doi: 10.1186/s40644-021-00381-y.
7
Correlation of tumor-related immunity with 18F-FDG-PET in pulmonary squamous-cell carcinoma.
Lung Cancer. 2018 May;119:71-77. doi: 10.1016/j.lungcan.2018.03.001. Epub 2018 Mar 16.
8
Reduction of tumor hypoxia by anti-PD-1 therapy assessed using pimonidazole and [F]FMISO.
Nucl Med Biol. 2022 May-Jun;108-109:85-92. doi: 10.1016/j.nucmedbio.2022.03.005. Epub 2022 Mar 24.
9
Molecular Imaging of GLUT1 and GLUT5 in Breast Cancer: A Multitracer Positron Emission Tomography Imaging Study in Mice.
Mol Pharmacol. 2018 Feb;93(2):79-89. doi: 10.1124/mol.117.110007. Epub 2017 Nov 15.
10
The reverse Warburg effect and 18F-FDG uptake in non-small cell lung cancer A549 in mice: a pilot study.
J Nucl Med. 2015 Apr;56(4):607-12. doi: 10.2967/jnumed.114.148254. Epub 2015 Feb 26.

引用本文的文献

2
Positron Emission Tomography Probes for Imaging Cytotoxic Immune Cells.
Pharmaceutics. 2022 Sep 24;14(10):2040. doi: 10.3390/pharmaceutics14102040.
3
Potentials of Non-Invasive F-FDG PET/CT in Immunotherapy Prediction for Non-Small Cell Lung Cancer.
Front Genet. 2022 Feb 4;12:810011. doi: 10.3389/fgene.2021.810011. eCollection 2021.
6
Correlation Between F-FDG Uptake and Immune Cell Infiltration in Metastatic Brain Lesions.
Front Oncol. 2021 Jun 24;11:618705. doi: 10.3389/fonc.2021.618705. eCollection 2021.
7
Value of F-FDG-PET to predict PD-L1 expression and outcomes of PD-1 inhibition therapy in human cancers.
Cancer Imaging. 2021 Jan 13;21(1):11. doi: 10.1186/s40644-021-00381-y.

本文引用的文献

2
Long-Term Survival in Patients Responding to Anti-PD-1/PD-L1 Therapy and Disease Outcome upon Treatment Discontinuation.
Clin Cancer Res. 2019 Feb 1;25(3):946-956. doi: 10.1158/1078-0432.CCR-18-0793. Epub 2018 Oct 8.
3
Anti PD-1 treatment increases [F]FDG uptake by cancer cells in a mouse B16F10 melanoma model.
EJNMMI Res. 2018 Aug 16;8(1):82. doi: 10.1186/s13550-018-0433-1.
4
Increased Tumor Glycolysis Characterizes Immune Resistance to Adoptive T Cell Therapy.
Cell Metab. 2018 May 1;27(5):977-987.e4. doi: 10.1016/j.cmet.2018.02.024. Epub 2018 Apr 5.
5
Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors.
Cell Metab. 2017 Jul 5;26(1):49-70. doi: 10.1016/j.cmet.2017.06.004.
6
Metabolic Instruction of Immunity.
Cell. 2017 May 4;169(4):570-586. doi: 10.1016/j.cell.2017.04.004.
8
Elements of cancer immunity and the cancer-immune set point.
Nature. 2017 Jan 18;541(7637):321-330. doi: 10.1038/nature21349.
10
FDG-PET in the evaluation of response to nivolumab in recurrent non-small-cell lung cancer.
World J Surg Oncol. 2016 Sep 5;14(1):238. doi: 10.1186/s12957-016-0998-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验