Department of Radiology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
Department of Orthopaedics, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
J Nanobiotechnology. 2024 May 27;22(1):289. doi: 10.1186/s12951-024-02549-7.
By integrating magnetic resonance-visible components with scaffold materials, hydrogel microspheres (HMs) become visible under magnetic resonance imaging(MRI), allowing for non-invasive, continuous, and dynamic monitoring of the distribution, degradation, and relationship of the HMs with local tissues. However, when these visualization components are physically blended into the HMs, it reduces their relaxation rate and specificity under MRI, weakening the efficacy of real-time dynamic monitoring. To achieve MRI-guided in vivo monitoring of HMs with tissue repair functionality, we utilized airflow control and photo-crosslinking methods to prepare alginate-gelatin-based dual-network hydrogel microspheres (G-AlgMA HMs) using gadolinium ions (Gd (III)), a paramagnetic MRI contrast agent, as the crosslinker. When the network of G-AlgMA HMs degrades, the cleavage of covalent bonds causes the release of Gd (III), continuously altering the arrangement and movement characteristics of surrounding water molecules. This change in local transverse and longitudinal relaxation times results in variations in MRI signal values, thus enabling MRI-guided in vivo monitoring of the HMs. Additionally, in vivo data show that the degradation and release of polypeptide (K (SL) K (KK)) from G-AlgMA HMs promote local vascular regeneration and soft tissue repair. Overall, G-AlgMA HMs enable non-invasive, dynamic in vivo monitoring of biomaterial degradation and tissue regeneration through MRI, which is significant for understanding material degradation mechanisms, evaluating biocompatibility, and optimizing material design.
通过将磁共振可见组件与支架材料集成,水凝胶微球(HMs)在磁共振成像(MRI)下变得可见,从而可以对 HMs 的分布、降解以及与局部组织的关系进行非侵入性、连续和动态监测。然而,当这些可视化组件物理混合到 HMs 中时,会降低它们在 MRI 下的弛豫率和特异性,从而削弱实时动态监测的效果。为了实现具有组织修复功能的 HMs 的 MRI 引导体内监测,我们利用气流控制和光交联方法,使用钆离子(Gd(III))作为交联剂,制备了藻酸盐-明胶基双网络水凝胶微球(G-AlgMA HMs)。当 G-AlgMA HMs 的网络降解时,共价键的断裂导致 Gd(III)的释放,不断改变周围水分子的排列和运动特征。这种局部横向和纵向弛豫时间的变化导致 MRI 信号值的变化,从而实现了 HMs 的 MRI 引导体内监测。此外,体内数据表明,G-AlgMA HMs 中多肽(K(SL)K(KK))的降解和释放促进了局部血管再生和软组织修复。总之,G-AlgMA HMs 通过 MRI 实现了对生物材料降解和组织再生的非侵入性、动态体内监测,这对于理解材料降解机制、评估生物相容性和优化材料设计具有重要意义。