Suppr超能文献

通过与富含碳水化合物的合成废水共发酵提高合成气厌氧转化为挥发性脂肪酸的微生物见解

Microbial insights of enhanced anaerobic conversion of syngas into volatile fatty acids by co-fermentation with carbohydrate-rich synthetic wastewater.

作者信息

Liu Chao, Wang Wen, O-Thong Sompong, Yang Ziyi, Zhang Shicheng, Liu Guangqing, Luo Gang

机构信息

1Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, Beijing, 100029 China.

2Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environment Science and Engineering, Fudan University, Shanghai, 200433 China.

出版信息

Biotechnol Biofuels. 2020 Mar 16;13:53. doi: 10.1186/s13068-020-01694-z. eCollection 2020.

Abstract

BACKGROUND

The co-fermentation of syngas (mainly CO, H and CO) and different concentrations of carbohydrate/protein synthetic wastewater to produce volatile fatty acids (VFAs) was conducted in the present study.

RESULTS

It was found that co-fermentation of syngas with carbohydrate-rich synthetic wastewater could enhance the conversion efficiency of syngas and the most efficient conversion of syngas was obtained by co-fermentation of syngas with 5 g/L glucose, which resulted in 25% and 43% increased conversion efficiencies of CO and H, compared to syngas alone. The protein-rich synthetic wastewater as co-substrate, however, had inhibition on syngas conversion due to the presence of high concentration of NH -N (> 900 mg/L) produced from protein degradation. qPCR analysis found higher concentration of acetogens, which could use CO and H, was present in syngas and glucose co-fermentation system, compared to glucose solo-fermentation or syngas solo-fermentation. In addition, the known acetogen , which could utilize both carbohydrate and CO/H was enriched in syngas solo-fermentation and syngas with glucose co-fermentation. In addition, butyrate was detected in syngas and glucose co-fermentation system, compared to glucose solo-fermentation. The detected -butyrate could be converted from acetate and lactate/ethanol which produced from glucose in syngas and glucose co-fermentation system supported by label-free quantitative proteomic analysis.

CONCLUSIONS

These results demonstrated that the co-fermentation with syngas and carbohydrate-rich wastewater could be a promising technology to increase the conversion of syngas to VFAs. In addition, the syngas and glucose co-fermentation system could change the degradation pathway of glucose in co-fermentation and produce fatty acids with longer carbon chain supported by microbial community and label-free quantitative proteomic analysis. The above results are innovative and lead to achieve effective conversion of syngas into VFAs/longer chain fatty acids, which would for sure have a great interest for the scientific and engineering community. Furthermore, the present study also used the combination of high-throughput sequencing of 16S rRNA genes, qPCR analysis and label-free quantitative proteomic analysis to provide deep insights of the co-fermentation process from the taxonomic and proteomic aspects, which should be applied for future studies relating with anaerobic fermentation.

摘要

背景

本研究进行了合成气(主要为CO、H₂和CO₂)与不同浓度碳水化合物/蛋白质合成废水的共发酵以生产挥发性脂肪酸(VFAs)。

结果

发现合成气与富含碳水化合物的合成废水共发酵可提高合成气的转化效率,合成气与5 g/L葡萄糖共发酵获得了最高效的合成气转化,与单独的合成气相比,CO和H₂的转化效率分别提高了25%和43%。然而,富含蛋白质的合成废水作为共底物,由于蛋白质降解产生的高浓度NH₃-N(> 900 mg/L)的存在,对合成气转化有抑制作用。qPCR分析发现,与葡萄糖单独发酵或合成气单独发酵相比,合成气和葡萄糖共发酵系统中存在更高浓度的可利用CO和H₂的产乙酸菌。此外,已知的既能利用碳水化合物又能利用CO/H₂的产乙酸菌在合成气单独发酵和合成气与葡萄糖共发酵中得到富集。另外,与葡萄糖单独发酵相比,在合成气和葡萄糖共发酵系统中检测到了丁酸盐。通过无标记定量蛋白质组学分析表明,在合成气和葡萄糖共发酵系统中,检测到的丁酸盐可由葡萄糖产生的乙酸盐和乳酸/乙醇转化而来。

结论

这些结果表明,合成气与富含碳水化合物的废水共发酵可能是一种有前景的提高合成气转化为VFAs的技术。此外,合成气和葡萄糖共发酵系统可改变共发酵中葡萄糖的降解途径,并在微生物群落和无标记定量蛋白质组学分析的支持下产生碳链更长的脂肪酸。上述结果具有创新性,可实现合成气有效转化为VFAs/长链脂肪酸,这无疑会引起科学界和工程界的极大兴趣。此外,本研究还结合16S rRNA基因高通量测序、qPCR分析和无标记定量蛋白质组学分析,从分类学和蛋白质组学方面深入了解共发酵过程,应将其应用于未来与厌氧发酵相关的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201e/7076986/00a029ce802d/13068_2020_1694_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验