Suppr超能文献

在单室微生物电化学系统中利用适应性电活性羧基营养菌将合成气发酵为乙酸盐和乙醇

Syngas Fermentation to Acetate and Ethanol with Adaptative Electroactive Carboxydotrophs in Single Chambered Microbial Electrochemical System.

作者信息

Tharak Athmakuri, Mohan S Venkata

机构信息

Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.

Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.

出版信息

Micromachines (Basel). 2022 Jun 21;13(7):980. doi: 10.3390/mi13070980.

Abstract

Microbial electrosynthesis system (MES; single-chambered) was fabricated and evaluated with carbon cloth/graphite as a working/counter electrode employing an enriched microbiome. Continuous syngas sparging (at working electrode; WE) enabled the growth of endo electrogenic bacteria by availing the inorganic carbon source. Applied potential (-0.5 V) on the working electrode facilitated the reduction in syngas, leading to the synthesis of fatty acids and alcohols. The higher acetic acid titer of 3.8 g/L and ethanol concentration of 0.2 g/L was observed at an active microbial metabolic state, evidencing the shift in metabolism from acetogenic to solventogenesis. Voltammograms evidenced distinct redox species with low charge transfer resistance (R; Nyquist impedance). Reductive catalytic current (-0.02 mA) enabled the charge transfer efficiency of the cathodes favoring syngas conversion to products. The surface morphology of carbon cloth and system-designed conditions favored the growth of electrochemically active consortia. Metagenomic analysis revealed the enrichment of phylum/class with Actinobacteria, Firmicutes/Clostridia and Bacilli, which accounts for the syngas fermentation through suitable gene loci.

摘要

构建了微生物电合成系统(MES;单室),并以碳布/石墨作为工作电极/对电极,利用富集的微生物群落进行评估。通过在工作电极(WE)处持续鼓入合成气,利用无机碳源促进了内生电细菌的生长。在工作电极上施加的电势(-0.5 V)促进了合成气的还原,从而导致脂肪酸和醇类的合成。在活跃的微生物代谢状态下,观察到较高的乙酸滴度为3.8 g/L,乙醇浓度为0.2 g/L,这证明了代谢从产乙酸转变为产溶剂。伏安图表明存在具有低电荷转移电阻(R;奈奎斯特阻抗)的不同氧化还原物种。还原催化电流(-0.02 mA)使阴极的电荷转移效率有利于合成气转化为产物。碳布的表面形态和系统设计条件有利于电化学活性菌群的生长。宏基因组分析揭示了放线菌门、厚壁菌门/梭菌纲和芽孢杆菌纲的富集,这通过合适的基因位点解释了合成气发酵过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17f7/9319612/1483981ee6c2/micromachines-13-00980-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验